PALÆONTOGRAPHICAL SOCIETY.

vol. xxx.

CARBONIFEROUS AND PERMIAN FORAMINIFERA

(THE GENUS FUSULINA EXCEPTED).

Pages 1—166; Plates I—XII.

FOSSIL BRACHIOPODA SUPPLEMENT.

Part II; No. I.

(JURASSIC AND TRIASSIC.)

Pages 73—144; Plates IX—XVI.

WEALDEN REPTILIA SUPPLEMENT.

No. VII.

(POIKILOPLEURON AND CHONDROSTEOSAURUS.)

Pages 1—7; Plates I—VI.

Issued for 1876.
California Academy of Sciences

Presented by Paleontographical Society.

December, 1906.
PALÆONTOGRAPHICAL SOCIETY.

VOLUME XXX.

CONTAINING

THE CARBONIFEROUS AND PERMIAN FORAMINIFERA. (The Genus Fusulina excepted.) By Mr. H. B. Brady. Twelve Plates.

SUPPLEMENT TO THE FOSSIL BRACHIOPODA. Part II. No. I. (Jurassic and Triassic.) By Mr. Davidson. Eight Plates.

SUPPLEMENT TO THE REPTILIA OF THE WEALDEN. (Poikilopleuron and Chondrostesaurus.) No. VII. By Prof. Owen. Six Plates.

ISSUED FOR 1876.

DECEMBER, 1876.
THE PALÆONTOGRAPHICAL SOCIETY was established in the year 1847, for the purpose of figuring and describing the whole of the British Fossils.

Each person subscribing One Guinea is considered a Member of the Society, and is entitled to the Volume issued for the Year to which the Subscription relates.

Subscriptions are considered to be due on the First of January in each year.

All the back volumes are in stock, and can be obtained (one or more) on application to the Treasurer or the Honorary Secretary.

The volumes are delivered free of carriage to any address within three miles of the General Post-Office, and are booked to any place beyond the three-mile radius; but in the latter case the carriage must be paid by the Member to whom they are sent.

Gentlemen desirous of forwarding the objects of the Society can be provided with circulars for distribution on application to the Honorary Secretary, the Rev. Thomas Wiltshire, 25, Granville Park, Lewisham, London, S.E.

A List of completed Monographs ready for binding as separate volumes, will be found on page 21.

The Annual Volumes are now issued in two forms of Binding: 1st, with all the Monographs stitched together and enclosed in one cover; 2nd, with each of the Monographs in a paper cover, and the whole of the separate parts enclosed in an envelope.

Members wishing to obtain the Volume arranged in the latter form are requested to communicate with the Honorary Secretary.
LIST

of

The Council, Secretaries, and Members

of the

PALÆONTOGRAPHICAL SOCIETY;

and

(I.) A catalogue of the works already published;
(II.) A classified list of the monographs completed, in course of publication, and in preparation, with the names of their respective authors;
(III.) The dates of issue of the annual volumes;
(IV.) A general summary, showing the number of the pages, plates, figures, and species in each monograph;
(V.) A stratigraphical list of the British fossils figured and described in the yearly volumes.
Council and Officers elected 31st March, 1876.

President.
J. S. BOWERBANK, LL.D., F.R.S., G.S.

Vice-Presidents.

E. W. Binney, Esq., F.R.S., G.S.
T. Davidson, Esq., F.R.S., G.S.

H. C. Barlow, M.D., F.G.S.
J. J. Biggby, M.D., F.R.S., G.S.
Rev. T. G. Bonney, B.D., F.G.S.
Sir A. Brady, F.G.S.
H. Collinson, Esq., F.L.S.
Sir P. de M. G. Egerton, Bart., M.P., F.R.S.
C. H. Gatty, Esq., F.G.S.
R. Hudson, Esq., F.R.S., G.S.

Prof. Owen, C.B., F.R.S., G.S.
T. Wright, M.D., F.R.S.E., G.S.

J. W. Iloft, Esq.
J. Gwyn Jeffreys, LL.D., F.R.S., G.S.
H. Lee, Esq., F.L.S., G.S.
J. Lyceyt, Esq., L.R.C.P.
E. Meryon, M.D., F.G.S.
Prof. Prestwich, F.R.S., G.S.
T. Sopwith, Esq., F.R.S., G.S.
Prof. Tennant, F.G.S., Z.S.

Treasurer.
Searles Wood, Esq., F.G.S., Beacon Hill House, Martlesham, Woodbridge, Suffolk.

Honorary Secretary.

Local Secretaries.

Alton—W. Curtis, Jun., Esq.
Bath—Rev. H. H. Winwood, M.A., F.G.S.
Belfast—Prof. R. O. Cunningham, F.L.S.
Berlin—Messrs. Friedländer & Son.
Birmingham—W. R. Hughes, Esq., F.L.S.
Blackburn—W. Harrison, Esq., F.G.S.
Bristol—E. B. Tawney, Esq., F.G.S.
Cambridge—James Carter, Esq.
Cheltenham—Dr. T. Wright, F.G.S.
Cirencester—J. Bravender, Esq., F.G.S.
Colchester—Dr. C. R. Bree.
Dublin—Dr. W. E. Steele, F.R.D.S.
Edinburgh—Prof. Balfour, M.D., F.R.S., L.S.
Glasgow—J. Thomson, Esq., F.G.S.
Guildford—R. A. C. Godwin-Austen, Esq., F.R.S.
Kendal—Thomas Gough, Esq.
Leicester—James Plant, Esq., F.G.S.
Liverpool—G. H. Morton, Esq., F.G.S.
Malvern—Dr. R. B. Grindrod, F.G.S.
Norfolk—Rev. J. Gunn, M.A., F.G.S.
North Devon—Townsend M. Hall, Esq., F.G.S.
Oxford—Prof. Prestwich, F.R.S.
Richmond, Yorkshire—E. Wood, Esq., F.G.S.
Scarborough—J. Leckenby, Esq., F.G.S.
Torquay—W. Pengelly, Esq., F.R.S., G.S.
LIST OF MEMBERS.*

CORRECTED TO SEPTEMBER, 1876.

Her Most Gracious Majesty the Queen.

Academy of Natural Sciences, Philadelphia, U.S.A.
Adams, William, Esq., F.G.S., Cardiff, Glamorganshire.
Adlard, J. E., Esq., Bartholomew Close. E.C.
Agassiz, Alex., Esq., Cambridge, U.S.A.
Albert Memorial Museum, Queen Street, Exeter, per W. S. D'Urban, Esq., F.L.S., Curator.
Aitken, John, Esq., J.P., F.G.S., Lane End, Bacup, Manchester.
Anderson, Sir James, F.G.S., 16, Warrington Crescent. W.
Angelin, Professor, Stockholm.
Ansted, Professor D. T., M.A., F.R.S., Athenæum Club. S.W.
Arbuthnot, Major W., 25, Hyde Park Gardens. W.
Archibald, J. W., Esq., Devonvale, Tillicoultry.
Asher and Co., Messrs., 13, Bedford Street, Covent Garden. W.C.
Athenæum Library, Liverpool.
Auckland, The Institute of, New Zealand.
Austen, Miss Helena E., St. Asaph, North Wales.
Australia, Acclimatisation Society of.
Aveline, W. T., Esq., F.G.S., Museum of Practical Geology, Jermyn Street. S.W.

Backhouse, Edward, Esq., Ashburne House, Sunderland.
Bain, James, Esq., 1, Haymarket, S.W.
Baker, A. F., Esq., Trinity College, Dublin.
Balfour, Professor, M.D., F.R.S., L.S., &c., Local Secretary, 27, Inverleith Row, Edinburgh.
Balfour, F. M., Esq., Trinity College, Cambridge.
Balfour, J. B., Esq., D.Sc., 27, Inverleith Row, Edinburgh.
Balston, W. E., Esq., F.G.S., Bearsted House, Maidstone.
Barber, Mrs., Barrow Point, Pinner, Watford.
Barclay, Joseph G., Esq., 54, Lombard Street. E.C.
Barlow, H. C., M.D., F.G.S., 11, Church Yard Row, Newington Butts, Surrey. S.
Barr, William Roby, Esq., F.G.S., New Bridge Mill, Stockport.

* The Members are requested to inform the Secretary of any errors or omissions in this list, and of any delay in the transmission of the Yearly Volumes.
Barthes and Lowell, Messrs., 14, Great Marlborough Street. W.
Barnstaple Literary and Scientific Institution.
Bath Royal Literary and Scientific Institution.
Bathurst, Rev. W. H., Lyndey Park, Gloucester.
Beaufoy, George, Esq. (Executor of the late), South Lambeth. S.
Becker, M. Edvald, Breslau, Silesia.
Beckles, S. H., Esq., F.R.S., G.S., 9, Grand Parade, St. Leonard’s-on-Sea.
Bedwell, F. A., Esq., Fort Hall, Bridlington Quay, Yorkshire.
Belfast Naturalists Field Club.
Bell, Professor T., F.R.S., L.S., G.S., &c., The Wakes, Selborne, Alton, Hants.
Bell and Bradfute, Messrs., 12, Bank Street, Edinburgh.
Benson, Starling, Esq., F.G.S., Swansea.
Berthand, Prof., Macon.
Bibliothèque du Palais des Arts, Lyon.
Bigsby, J. J., M.D., F.R.S., G.S., 89, Gloucester Place, Portman Square. W.
Bilke, Edward, Esq., F.G.S., &c., 1, Chester Square, Pimlico. S.W.
Binney, E. W., Esq., F.R.S., G.S., &c., Vice-President, 55, Peter Street, Manchester.
Bird, J. Durham, Esq., M.B., &c., Kirby House, Heaton Chapel, Stockport.
Birmingham Free Library, Radcliffe Place, Birmingham.
Birmingham Natural History Society, 90, Rylayd Street, North, Birmingham.
Birmingham Old Library, Union Street, Birmingham.
Blackmore, Humphrey P., M.D., Salisbury.
Blake, Rev. J. F., M.A., F.G.S., 6, Wells Road, Regent’s Park. N.W.
Blake, W., Esq., Bridge House, South Petherton.
Blanford, H. F., Esq., F.G.S., 21, Bouverie Street, Whitefriars. E.C.
Boase, H. S., M.D., F.R.S., G.S., &c., Seafield House, Magdalen Place, Dundee.
Bonissent, Monsieur, Clarentan.
Bonney, Rev. T. George, B.D., F.G.S., St. John’s College, Cambridge.
Bordeaux, La Faculté des Sciences de.
Borradaille, Charles, Esq., East Hothly, Uckfield, Sussex.
Boston Society of Natural History, Boston, U.S.A.
Bowerbank, J. S., LL.D., F.R.S., &c., President, 2, East Ascent, St. Leonard’s-on-Sea.
Bowie, Mrs., 43, Palace Gardens Terrace, Kensington. W.
Brady, Sir Antonio, F.G.S., Stratford, Essex.
Brassey, Thomas, Esq., 56, Lowndes Square. S.W.
Bravender, John, Esq., F.G.S., Local Secretary, The Firs, Cirencester.
Bree, C. R., M.D., Local Secretary, East Hill, Colchester.
Briggs, Miss Ellen, 55, Lincoln’s Inn Fields. W.C.
Brighton and Sussex Natural History Society, Brighton.
Bristol Naturalists’ Society, Geological Section, Museum, Bristol.
British Museum, Departmental Mineralogical and Geological Library. W.C.
British Museum, Printed Book Department. W.C.
Brooke, Sir Victor, Bart., Colebrooke Park, Brookborough, Ireland, and 53, Eaton Square. S.W.
Brown, Edwin, Esq., F.R.G.S., G.S., Burton-on-Trent.
Brown, Hugh Horatio, Esq., 6, Derwent Street, Derby.
Brown, Isaac, Esq., Kendal.
Brown, T. C., Esq., Cirencester.
Brown, T. Foster, Esq., Guildhall Chambers, Cardiff.
Browne, Wm. Meredith, Esq., Westminster Fire Office, King Street, Covent Garden. W.C.
Buckman, Professor James, F.G.S., &c, Bradford Abbas, Sherborne, Dorset.
Busk, George, Esq., F.R.S., L.S., &c, 32, Harley Street, Cavendish Square. W.
Buxton, Rev. F. A., Easneye, Ware.

Cambridge University Library.
Capel, the Rt. Rev. Monsignor, D.D., Kensington. W.
Cardiff Free Library.
Carpenter, Alfred, M.D., 113, High Street, Croydon. S.
Carpenter, W. B., M.D., F.R.S., &c, 56, Regent’s Park Road. N.W.
Carter, James, Esq., Local Secretary, 30, Petty Cury, Cambridge.
Cash, Wm., Esq., Elmfield Terrace, Savile Park, Halifax.
Cavell, Edmund, Esq., F.G.S., Saxmundham.
Champernowne, Arthur, Esq., Darlington Hall, Totness, Devonshire.
Chapman, Thomas, Esq., 14, Cockspur Street, Charing Cross. S.W.
Chapman, Thomas, Esq., F.R.S., 25, Bryanstone Square. W.
Cheltenham College.
Cheltenham Permanent Library, 18, Clarence Street, Cheltenham.
Chester Society of Natural Science.
Chicago, Library of.
Christ’s College, Cambridge, Library of.
Clabon, J. M., Esq, 21, Great George Street. S.W.
Clark, J. Willis, Esq., Scroope House, Trumpington Street, Cambridge.
Clarke, Rev. W. B., F.G.S., &c, St. Leonards, near Sydney, New South Wales.
Clayton, Rev. J. H., Liphook, Hants.
Cobbold, Rev. R. H., The Rectory, Ross.
Cocchi, Sig. Q., Professor of Geology, Florence.
Colchester, W., Esq., F.G.S., Springfield House, Ipswich.
Cole, W. M., Esq., 93, St. Helen Street, Ipswich.
Collinson, Henry, Esq., 7, Devonshire Place, Portland Place. W.
Cooper, Charles J., Esq., Bridgenorth, Salop.
Cornalia, Prof. Emilio, Milan.
Cormnwaite, Rev. T. M.A., Walthamstow.
Corporation of London, Library Committee of, Guildhall. E.C.
Cotteau, Mons. G., Auxerre.
Coutts, Jas., Esq., 310, Argyle Street, Glasgow.
Cowan, Thomas W., Esq., Horsham.
Craig, R., Esq., Langside, Beith, Ayrshire. N.B.
Cross, Rev. J. E., Appleby Vicarage, Brigg, Lincolnshire.
Crosskey, Rev. H. W., 28, George Road, Birmingham.
Cubitt, George, Esq., M.P., 17, Princes Gate. W.
Cull, R., Esq., F.S.A., R.G.S., 13, Tavistock Street, Bedford Square, W.C.
Cunnington, W., Esq., F.G.S., Argyll House, 361, Cold Harbour Lane, Brixton, S.W.
Currey, Eliot S., Esq., The Wallands, Lewes, Sussex.
Curtis, W., Esq., Local Secretary, Alton, Hants.

Davidson, Thomas, Esq., F.R.S., G.S., Vice-President, 3, Leopold Road, Brighton.
Daw, E., Esq., Braughting, Ware.
Dawkins, W. Boyd, Esq., F.R.S., G.S., Birch View, Norman Road, Rusholme, Manchester.
Dawson, Principal J. W., LL.D., F.R.S., G.S., &c., McGill's University, Montreal.
Deane, Henry, Esq., 17, The Pavement, Clapham, S.W.
De Grey and Ripon, Earl, Carlton Gardens, S.W.
Deighton, Bell, & Co., Messrs., Cambridge.
Deshayes, Prof. G. P., F.M.G.S., Paris.
Deslongchamps, Prof., Caen.
Devonshire, Duke of, F.R.S., G.S., &c., Devonshire House, Piccadilly, W.
Devon and Exeter Institution, Exeter (by Ed. Parfitt, Esq.).
Dewalque, Prof., F.C.G.S., Liége.
Dickinson, F. H., Esq., King Weston, Somerton.
Dickinson, W., Esq., Thorncroft, Workington.
Dickinson, W., Esq., 6, Princes Street, Lothbury, E.C.
Dickson, Edw., Esq., West Cliff, Preston, Lancashire.
Digby, Lord, Minterne, Gerne Abbas, near Dorchester.
Dorset County Museum Library, Dorchester.
Dowson, E. T., Esq., Goldstone, Beccles.
Doyen, Mons. J. M.
Ducie, the Earl of, F.R.S., G.S., &c., 16, Portman Square, W.; and Tortworth Court, Falsfield, R.S.O., Gloucestershire.
Dudley and Midland Geological and Scientific Society and Field-Club.
Duff, J. Esq., Linden House, Teuters Street, Bishop Auckland.
Dumortier, Mons. E., Lyons.
Duncan, Prof., P. M., M.B., F.R.S., Pres. G.S., 99, Abbey Road, St. John's Wood, N.W.
Duncanson, J., Esq., The Walk, Alloa, N.B.
Durham, the Dean and Chapter of (by Samuel Rowlandson, Esq., the College, Durham).

Eccles, James, Esq., 15, Durham Villas, Phillimore Gardens, Kensington, W.
Edinburgh Geological Society, 5, St. Andrew Square, Edinburgh.
Edinburgh Museum of Science and Art, Argyle Square, Edinburgh.
Egerton, Sir Philip de Malpas Grey, Bart., M.P., Trustee Brit. Museum, F.R.S., G.S., &c., Oulton Park, Cheshire; and 28a, Albemarle Street, W.
Elliot, John, Esq., F.R.C.S., Kingsbridge, Devon.
Elliot, Sir Walter, K.S.I., F.L.S., Wolfelee, Hawick, N.B.
Emniskillen, William Willoughby, Earl of, D.C.L., F.R.S., G.S., &c., Florence Court, Enniskillen; and 65, Eaton Place.
Errington, The Reverend Dr., Prior Park, Bath.
Etheridge, R., Esq., F.R.S., G.S., &c., Museum of Practical Geology, Jemyn Street, S.W.
Evans, John, Esq., F.R.S., G.S., Nash Mills, Hemel Hempstead.
Falconer, Thomas, Esq., F.G.S., Usk, Monmouthshire.
Falkner, Frederick, Esq., Somersetshire Bank, Bath.
Favre, Mons. Alph., Professor of Geology, Academy, Geneva.
Flower, John, Esq., Fairfield Road, Croydon, S.
Forbes, John Edward, F.G.S., 3, Faulkner Street, Manchester.
Fordham H. G., Esq., Odsey, Royston, Herts.
Fotherby, H. J., M.D., 3, Finsbury Square. E.C.
Fox, Rev. W. Darwin, Delamere Rectory, near Chester.
Fraser, John, M.A., M.D., F.R.C.S. Edin., Wolverhampton.
Friedländer, Messrs., Local Secretaries, 11, Carlstrasse, Berlin.
Fritsch, Prof. K. von, Halle.
Fuller, Rev. A., Ichenor Rectory, Chichester.
Galton, Captain Douglas, R.E., F.R.S., G.S., &c., 12, Chester Street, Grosvenor Place. S.W.
Gardner, J. S., Esq., F.G.S., Park House, St. John's Wood Park. N.W.
Gardner, R., Esq., junr., Clive, Shrewsbury.
Gassiot, I. P., Esq., F.R.S., &c., Clapham. S.
Gatty, Charles Henry, Esq., F.G.S., Felbridge Park, East Grinstead.
Gaudry, Prof., F.C.G.S., Paris.
Geological Society of Manchester.
Geological Survey of Great Britain, Palæontological Department, Jermyn Street. S.W.
Geological Survey of Ireland.
Geologische Reichsanstalt, Vienna.
Geologists' Association, University College. W.C.
Gibson, G. S., Esq., Saffron Walden.
Gibson, Thomas F., Esq., F.G.S., &c., Broadwater Down, Tunbridge Wells.
Glasgow Geological Society, Andersonian University, Glasgow.
Glen, D. C., Esq., 14, Annfield Place, Glasgow.
Gloucester Literary Society, Gloucester (by Dr. B. Wagbourn).
Godlee, Mrs., Whips Cross, Walthamstow. E.
Godwin-Austen, R. A. C., Esq., F.R.S., G.S., &c., Local Secretary, Shalford House, Guildford.
Gough, Thomas, Esq., Local Secretary, Kendal.
Grant, James, Esq., Jun., 55, St. George's Road, Glasgow.
Gray, John, Esq., Lyttleton Terrace, Hagley, near Stourbridge.
Greenwell, G. C., Esq., Poynton, Stockport.
Grindrod, R. B., M.D., F.G.S., &c., Local Secretary, Townshend House, Great Malvern.
Grassart, Wm., Esq., Salsburgh, Holytown, Lanarkshire.
Grundy, Thomas, Esq., Beatlands, Sidmouth, Devon.
Guest, B., Esq., 26, Granville Park, Lewisham. S.E.
Guise, Sir W. V., Bart., F.G.S., &c., Elmore Court, near Gloucester.
Gunn, Rev. J., M.A., Local Secretary, 10, Cathedral Street, Norwich.
Hall, Hugh F., Esq., F.G.S., 17, Dale Street, Liverpool.
Hall, Townshend M., Esq., F.G.S., Local Secretary, Pitton Parsonage, Barnstaple.
Harford, Frederick, Esq., Ocean Marine Insurance Company, 2, Old Broad Street. E.C.
Harkness, Professor Robert, F.R.S., G.S., Queen's College, Cork.
Harmer, F. W., Esq., F.G.S., Oakland House, Cringleford, near Norwich.
Harris, E., Esq., F.G.S., Rydal Villa, Longton Grove, Upper Sydenham. S.E.
Harrison, William, Esq., F.G.S., S.A., R.G.S., R.S.Ant., &c., Local Secretary, Samlesbury Hall, Preston, Lancashire; and Conservative Club, St. James's Street. S.W.
Hartley Institution, Southampton, per T. W. Shore, Esq., F.C.S., Secretary.
Haughton, Rev. Professor S., M.D., F.R.S., G.S., Fellow of Trinity College, Dublin.
Hawkins, B. Waterhouse, Esq., F.L.S., G.S., Local Secretary, New York.
Hawkins, Rev. H. S., Forest Lodge, Liphook, Hants.
Hawkshaw, J. Clarke, Esq., 25, Cornwall Gardens, South Kensington. S.W.
Haythornthwaite, William, Esq., Kirkby Lonsdale.
Hébert, Prof., F.M.G.S., Paris.
Hector, Dr., 7, Westminster Chambers, Victoria Street. S.W.
Heidelberg Library.
Hepburn, A. Buchan, Esq., Smeaton-Hepburn, Preston Kirk. N.B.
Heywood, James, Esq., F.R.S., G.S., &c., 26, Palace Gardens, Bayswater Road. W.
Higgins, E. T., Esq., 24, Bloomsbury Street. W.C.
Hindson, Isaac, Esq., Kirkby Lonsdale.
Hirst, John, Esq., jun., Dobecross, Saddleworth, near Manchester.
Hopgood, James, Esq., Clapham Common. S.W.
Horen, Dr. F. Van, St. Trond, Belgium.
Host, M., Copenhagen.
Howchin, Rev. Walter, Haltwhistle, Northumberland.
Howitt, Thomas, Esq., Queen Square, Lancaster.
Hudleston, W. H., Esq., F.G.S., 23, Cheyne Walk. S.W.
Hudson, Robert, Esq., F.R.S., G.S., Clapham. S.W.
Hughes, T. M'K., Prof., F.G.S., &c., Cambridge.
Hughes, W. R., Esq., F.L.S., Local Secretary, Thorn Villa, Handsworth, Birmingham.
Hull, W. D., Esq., F.G.S., &c., Stanton Lodge, Tunbridge Wells.
Hunt, J., Esq., Milton of Campsie, Glasgow. N.B.
Hunter, J. R. S., LL.D., Daleville, Carlake. N.B.
Huxley, Prof, T. H., LL.D., F.R.S., &c., Museum, South Kensington. S.W.
Ilott, James William, Esq., Beechfield, Bromley, Kent.
Ipswich Museum, Ipswich.
Jessen, Thomas, Esq., 7, Upper Wimpole Street, Cavendish Square. W.
Johnes, J., Esq., F.G.S., Dolancoatly, Llandeilo, R.S.O., South Wales.
Jones, John, Esq., Saltburn by the Sea, Yorkshire.
Jones, Professor T. Rupert, F.R.S., G.S., &c., 5, College Terrace, York-town, Surrey.
Jordan, Swinfin, Esq., Cherith Lodge, Clifton Park, Bristol.
Jose, J. E., Esq., 3, Queen Square, Bristol.

King, W. P., Esq., Avonside, Clifton Down, Bristol.
Kinnaird, Lord, Rossie Priory, Inchturre. N.B.
King's School, Library of, Sherborne.
Kingston, G. S., Esq., Grote Street, Adelaide, South Australia.
Kirkby, J. W., Esq., Pirnie Colliery, Leven, Fife.
Knapp, Rev. John, St. John's Parsonage, Portsea, Portsmouth, Hants.
Koechner, Herr W., Breslau, Germany.
Krantz, Herr, Bonn.

Lawrence, John, Esq., F.G.S., Elton, Peterborough.
Leaf, C. J., Esq., F.G.S., Old Change, E.C.; and Cobham, Surrey.
Leckenby, John, Esq., Local Secretary, Florence Villa, Scarborough.
Lee, John Edward, Esq., F.G.S., Villa Syracuse, Torquay.
Leeds Library, Commercial Street, Leeds, Yorkshire.

Leicester Town Museum.
Leighton, W. H., Esq., F.G.S., 2, Merton Place, Turnham Green. W.
Leipzig, Museum of.
Lindsay, Charles, Esq., Ridge Park, Lanark. N.B.
Lingard, John R., Esq., 8, Booth Street, Piccadilly, Manchester.
Linn, James, Esq., Livingstone, by Midcalder. N.B.
Linnean Society, Burlington House, Piccadilly. W.
Lister, Arthur, Esq., Leytonstone. N.E.
Literary and Philosophical Society of Manchester.
Literary and Philosophical Society of Newcastle, Westgate Street, Newcastle-on-Tyne.
Literary and Philosophical Society of Sheffield.
Liverpool Free Public Library.
Liversidge, Prof. A., F.C.S., G.S., The University, Sydney, New South Wales.
Lloyd, J. H., Esq., 100, Lancaster Gate. W.
Lobley, J. L., Esq., F.G.S., 59, Clarendon Road, Kensington Park. W.
London Institution, Finsbury Circus. E.C.
Loril, Mous. P. de, Céliney, Switzerland.
Lovén, Professor S., Stockholm.

Lycett, J., Esq., L.R.C.P.E., Scarborough, Yorkshire.
Lyon, Bibliothèque de la Ville de.

McMurtrie, James, Esq., Radstock, Bath.
Mackenzie, J. W., Esq., 15, Hans Place. S.W.
Mackeson, Henry B., Esq., F.G.S., &c., Hythe, Kent.
Macmillan, Messrs., Cambridge.
Mac Moreland, Rev. J. P., The Manse, Minto, Hawick. N.B.
Madras Government Museum (per Messrs. Williams and Norgate).
Maggs, T. C., Esq., Medical Hall, Yeovil.
Major, Charles, Esq., Red Lion Wharf, Upper Thames Street. E.C.
Manchester Free Library.
Mann, C. S., Esq., F.G.S., Eltham, Kent. S.E.
Mansel-Pleydell, John, Esq., F.G.S., Longthorns, Blandford, Dorset.
Manzoni, Dr. Angelo, Ravenia.
Marburgh, University of.
Marsham, Hon. Robert, F.G.S., 5, Chesterfield Street, Mayfair. W.
Martin, Miss, Brendon’s Norton, near Tewkesbury.
Mason, J. W., Esq., F.G.S., India Museum, Calcutta.
Mason, P. B., Esq., Burton-on-Trent.
Mason, Robert, Esq., 6, Albion Crescent, Downhill, Glasgow.
Mathews, W., Esq., F.G.S., 49, Harborne Road, Birmingham.
Meade, Rev. R. J., Castle Cary.
Merian, Professor Dr. Pierre, F.M.G.S., Directeur du Muséum, Basle.
Meyer, C. J. A., Esq., F.G.S., 8, Church Buildings, Clapham Common. S.W.
Milne-Edwards, Prof. H., F.M.G.S., Jardin des Plantes, Paris.
Mitchell, F. J., Esq., Llanbrechba Grange, Newport, Monmouthshire.
Mohr, M., Esq.
Moiser, H. R., Esq., F.G.S., Heworth Grange, York.
Molyneaux, W., Esq.
Monk, James, Esq., Aden Cottage, Durham.
Mons, Museum of, Belgium, per Prof. C. A Houzeau, Ryon, près Mons.
Moore, Charles, Esq., F.G.S., 6, Cambridge Place, Widcombe Hill, Bath.
Moore, Joseph, Esq., Broomwell House, Dulwich. S.E.
Morton, George Highfield, Esq., F.G.S., Local Secretary, 122, London Road, Liverpool.
Mure, T. M., Esq., Perceton-by-Irvine, Ayrshire. N.B.
Museum of Practical Geology, Jermyn Street. S.W.
Nantes, Musée d’Histoire Naturelle de.
Neale, Edward Vansittart, Esq., 12, Church Row, Hampstead. N.W.
Newberry, Dr. John, School of Mines, Columbia College, New York.
Norfolk and Norwich Literary Institution, Norwich.
Norton, R. B., Esq., 3, Chesterfield Street, Mayfair, London. W.
Nottingham Free Library.
Nottingham Literary and Philosophical Society, School of Art, Nottingham.
Nutt, D., Esq., Strand. W.C.
Oldham, Mrs., Hyde House, South Littleton, Evesham, Worcestershire.
Onate, Countess of, Madrid.
Oswestry Naturalists’ Field Club, Oswestry.
Ormerod, G. W., Esq., M.A., F.G.S., &c., Brookbank, Teignmouth.
Owen, Professor R., M.D., LL.D., C.B., F.R.S., &c., Vice-President, British Museum. W.C.
Owens College, Manchester.
Papillon, Rev. J., Rectory, Lexden, Colchester.
Parker, J., Esq., F.G.S., Turl Street, Oxford.
Parrott, J., Esq., Jolesfield Schools, West Grimstead, Horsham.
Pattison, S. R., Esq., F.G.S., 50, Lombard Street. E.C.
Paynter, Rev. Samuel, Stoke Hill, Guildford, Surrey.
Peabody Institution, America.
Pease, Thomas, Esq., F.G.S., Cote Bank, Westbury-on-Trym, Bristol.
Peckover, Algernon, Esq., F.G.S., Wisbeach.
Pee, Sir Henry W., Bart., M.P., Wimbledon House, Wimbledon, S.W.
Pengelly, William, Esq., F.R.S., G.S., Local Secretary, Torquay.
Penny, Rev. C. W., Wellington College, Wokingham.
Penruddocke, Charles, Esq., Compton Park, near Salisbury.
Phené, John S., LL.D., F.G.S., 32, Oakley Street, Chelsea.
Philosophical Society of Glasgow.
Phear, Rev. George, F.G.S., Emmanuel College Lodge, Cambridge.
Poynton, Rev. Francis, Rectory, Kelston, Bath.
Prestwich, Prof. Joseph, F.R.S., G.S., Local Secretary, 34, Broad Street, Oxford.
Portal, Wyndham, Esq., Malshanger House, Basingstoke.
Powrie, James, Esq., F.G.S., Reswallie, Forfar.
Price, F. G. H., Esq., 25, Clarendon Gardens, Maida Hill, W.
Pryor, M. R., Esq., 12, Great Winchester Street, E.C.
Quaritch, B., Esq., Piccadilly, W.
Queen's College, Belfast.
Queen's College, Cork (by Messrs. Hodges and Smith).
Queen's College, Galway.
Queen's College, Oxford.
Radcliffe Library, Oxford.
Ramsay, Mrs. Wm., Rannagubzion, Blairgowrie.
Ramsay, Professor A. C., LL.D., F.R.S., G.S., &c., Museum Pract. Geology, Jermyn Street, S.W.
Ransome, Robert Charles, Esq., Ipswich.
Reinevier, Mons. E., Professor of Geology, Academy of Lausanne, Switzerland.
Ricketts, Charles, M.D., F.G.S., 22, Argyle Street, Birkenhead.
Rigby, G., Esq., 12, Ormerod Street, Burnley.
Rigby, S., Esq., Bruche Hall, near Warrington.
Roberts, Isaac, Esq., F.G.S., 26, Rock Park, Rock Ferry, Birkenhead, Cheshire.
Robertson, D., Esq., F.G.S., 42, Kelvingrove Street, Glasgow.
Robertson, Edw. H., Esq., 31, Tressillon Road, Upper Lewisham Road, London, S.E.
Robbins, George, Esq., F.G.S., 9, Royal Crescent, Bath.
Robinson, George, Esq., 8, Broad Street, Halifax, and Portalegre, Portugal.
Roemer, Professor F., University of Breslau, Silesia.
Rofe, John, Esq., F.G.S., &c, 6, Crosbie Terrace, Leamington.
Rothery, Charles W., Esq., Little Thorpe Villa, near Ripon.
Royal Artillery Institution, Woolwich, S.E.
Royal College of Science for Ireland, Stephen's Green, Dublin.
Royal College of Surgeons, Lincoln's Inn Fields, W.C.
Royal Dublin Society, Dublin.
Royal Geological Society of Cornwall, Penzance.
Royal Institution of Cornwall, Truro.
Royal Institution of Great Britain, Albemarle Street. W.
Royal Institution, Liverpool.
Royal Institution of South Wales, Swansea.
Royal Irish Academy, 19, Dawson Street, Dublin.
Royal Society of Edinburgh.
Royal Society of London, Burlington House. W.
Royal Society of Tasmania.

Rutter, John, Esq., Ilminster.
Rylands, T. G., Esq., F.L.S., G.S., Highfields, Thelwall, near Warrington.
Sabine, General Sir Edward, R.E., F.R.S., L.S., &c., 13, Ashley Place, Westminster. S.W.
St. John's College, Cambridge.
St. Peter's College, Cambridge.
Salford Borough Royal Museum and Library, Peel Park, Manchester.
Salt, S., Esq., Gateside, Silcroft, Cumberland.
Sanford, W. A., Esq., F.G.S., Nynehead Court, Wellington, Somerset.
Saul, G. T., Esq., F.Z.S., Bow Lodge, Bow Road. E.
Saunders, James Ebenezer, Esq., F.L.S., G.S., 9, Finsbury Circus. E.C.
Savery, Mons. F., Local Secretary, 77, Boulevard St. Germain, Paris.
Scarborough, Philosophical Society of.
Scientific Club, 7, Savile Row. W.
Seguena, Prof., Messina.
Sells, T. J., Esq., F.G.S., Guildford.
Severs, J., Esq., Airthwaite, Kendal.
Sharman, George, Esq., St. Leonard's Villas, West End Lane, Kilburn. N.W.
Sharp, John, Esq., F.G.S., Local Secretary, Culverden Hill, Tunbridge Wells, Kent.
Sharp, Samuel, Esq., F.G.S., S.A., Great Harrowden Hall, near Wellingborough.
Sidney Sussex College Library, Cambridge.
Simpson, J. B., Esq., Hedgefield House, Blaydon-on-Tyne.
Skirre, John, Esq., 6, Union Street, Blackburn.
Sloper, G. E., Esq., Devizes.
Smith, Rev. Charles Lesingham, Little Canfield Rectory, near Dunmow.
Smith, J., Esq., Stobbs, Kilwinning.
Smith, Captain Robert, 65, Frankford Avenue, Rathgar, Dublin.
Smith, Rev. Urban, Stoney Middleton.
Smite, J. D., Esq., C.E., F.G.S., Madhopoor, Punjáb (by Messrs. Smith, Elder, and Co.).
Society Isis, Dresden (per Dr. H. B. Geinitz, F.M.G.S.).
Somersetshire Archaeological and Natural History Society, Museum, Taunton.
Sommerville, J., Esq., 7, Westbury Street, Glasgow.
Sopwith, T., Esq., F.R.S., G.S., 103, Victoria Street. S.W.
Spencer, John, Esq., Rock Terrace, Crawshawbooth, Manchester.
Spicer, Henry, Esq., jun., F.G.S., 19, New Bridge Street, Blackfriars. E.C.
Spink, J., Esq., Drax, Selby.
Stebbing, Rev. T. R. R., M.A., Tor Crest, Hall, Torquay.
Stevens, B. F., Esq.
Stewart, Mrs. John, 7, Grosvenor Crescent, Edinburgh.
Stewart, S. A., Esq., 6, North Street, Belfast.
Stobart, W. C., Esq., Etherley Lodge, Darlington.
Stockholm Academy of.
Stoddart, W. W., Esq., F.G.S., 9, North Street, Bristol.
Studer, Herr B., For.M.G.S., Professor of Geology, Berne.
Sunderland Corporation Museum.
Sunderland Subscription Library.
Tasmania, Royal Society of.
Tawney, E. B., Esq., F.G.S., 16, Royal York Crescent, Clifton, Bristol.
Taylor, John, Esq., Earsdon, Newcastle-on-Tyne.
Taylor, S. Watson, Esq., Erlestoke Park, Devizes.
Taylor-Smith, James, M.D., Colpike, Nightingale Lane, Clapham. S.W.
Tennant, Professor Jas., F.G.S., &c., 149, Strand. W.C. (Two Copies.)
Thin, J., Esq., 51, South Bridge, Edinburgh.
Thomas, Capt. F. W. L., R.N., Rose Park, Trinity, near Edinburgh.
Thomson, James, Esq., F.G.S., Local Secretary, 176, Eglinton Street, Glasgow.
Thompson, Miss S., Stamford.
Thomson, Professor Sir Wyville, LL.D., F.G.S., Edinburgh.
Thorpe, W. G., Esq., F.G.S., Gloucester House, Larkhall Rise, S.W., and Barton House, Ipplepen, Devon.
Torquay Natural History Society.
Trautschold, Dr., Moscow.
Traquair, Professor R. H., M.D., Museum of Science and Art, Edinburgh.
Trevelyan, Sir W. C., Bart., F.G.S., Wellington, Newcastle-on-Tyne; and Athenaeum Club. S.W.
Trinity College, Cambridge.
Twamley, Charles, Esq., F.G.S., Ryton-on-Dansmore, near Coventry.
Tyler, Capt. Chas., F.L.S., G.S., 317, Holloway Road, Holloway. N.
Tylor, Alfred, Esq., F.L.S., G.S., Warwick Lane, Newgate Street. E.C.
University of Edinburgh.
University of Glasgow.
University Library, Aberdeen.
University Library, Leipzig.
University Library, St. Andrew's.
Valpy, R. H., Esq.
Vernon Park Museum, Stockport.
Wall, Geo. P., Esq., F.G.S., 3, Victoria Street, Broomhill Park, near Sheffield.
Walmstedt, Dr. L. P., Professor of Mineralogy, Upsala.
Walton, William, Esq., 11, Paragon, Blackheath. S.E.
Ward, Henry, Esq., F.G.S., Rodbaston, Penkridge.
Wardle, Thos., Esq., F.G.S., St. Edward Street, Leek.
Warrington Museum and Library.
Warwickshire Natural History Society, Warwick.
Watson, Rev. R. B., F.G.S., 19, Chalmers Street, Edinburgh.
Watts, Arthur, Esq., Vice-Principal of Training College, Giles Gate, Durham.
West, G. Herbert, Esq., B.A., F.G.S., Woodcote, Bournemouth, Hants.
Westermann, Messrs., New York.
Whedborne, G. F., Esq., F.G.S., Chester House, Weston-super-Mare.
White, Alfred, Esq., F.L.S., West Drayton.
Willaume, T. B. T., Esq., juv., 9, Queensborough Terrace, Kensington Gardens. W.
Willcock, J. W., Esq., Clievion, Dinas Mawddwy, Merionethshire.
Williams and Norgate, Messrs., Henrietta Street, Covent Garden. W.C.
Wills and Sotheran, Messrs., Strand. W.C.
Wilson, H., Esq., Ivy House, Marske-by-the-Sea.
Wilson, J. M., Esq., B.A., F.G.S., Rugby.
Wiltshire, Rev. Thomas, M.A., F.L.S., Sec., Honorary Secretary, 25, Granville Park, Lewisham, Kent. S.E.
Winstone, Benjamin, M.D., 53, Russell Square. W.C.
Witts, Rev. E. F., F.G.S., Rectory, Upper Slaughter, near Stow-on-the-Wold.
Winchester College Natural History Society.
Winwood, Rev. Henry H., F.G.S., Local Secretary, 4, Cavendish Crescent, Bath.
Wollaston, G. H., Esq., M.A., F.G.S., 117, Pembroke Road, Clifton, Bristol.
Wolley-Dod, Rev. Charles, Eton College.
Wood, Edward, Esq., F.G.S., R.S.I., &c., Local Secretary, Richmond, Yorkshire.
Wood, Henry, Esq., 10, Cleveiland Square, Bayswater. W.
Wood, Rev. J. E. Tenison, F.G.S., Penola, South Australia.
Woodd, A. B., Esq., Woodlands, Hampstead. N.W.
Woodward, Charles, Esq., F.R.S., 10, Compton Terrace, Islington. N.
Woodward, Henry, Esq., F.R.S., G.S., Z.S., British Museum. N.W.
Woodwardian Museum, Cambridge.
Worcestershire Natural History Society, Foregate, Worcester.
Wright, F. Beresford, Esq., Aldercar Hill, Langley Mill, Nottingham.
Wright, Joseph, Esq., F.G.S., 1, Donegall Street, Belfast.
Wright, Thomas, M.D., F.R.S.E., G.S., Vice-President, St. Margaret’s Terrace, Cheltenham.
Wrightman, W. H., Esq., Minster Buildings, Church Street, Liverpool.
Wurzburg, the Royal University Library of.

Yorkshire Philosophical Society, York.
Zoological Society of London, 11, Hanover Square. W.
§ I. CATALOGUE OF WORKS

ALREADY PUBLISHED BY

THE PALÆONTOGRAPHICAL SOCIETY:

Showing the Order of publication; the Years during which the Society has been in operation; and the Contents of each yearly Volume.

Vol. I. Issued for the Year 1847

The Crag Mollusca, Part I, Univalves, by Mr. S. V. Wood, 21 plates.

" II. " 1848

The Reptilia of the London Clay, Part I, Chelonia, &c., by Profs. Owen and Bell, 38 plates.
The Eocene Mollusca, Part I, Cephalopoda, by Mr. F. E. Edwards, 9 plates.

The Entomostraca of the Cretaceous Formations, by Mr. T. R. Jones, 7 plates.

The Permian Fossils, by Prof. Wm. King, 29 plates.

The Reptilia of the London Clay, Part II, Crocodilia and Ophidia, &c., by Prof. Owen, 13 plates.

" III. * " 1849

The Crag Mollusca, Part II, No. I, by Mr. S. V. Wood, 12 plates.

The Fossil Brachiopoda, Part III, No. 1, Oolitic and Liassic, by Mr. Davidson, 13 plates.

" IV. " 1850

The Reptilia of the Cretaceous Formations, by Prof. Owen, 30 plates.

" V. " 1851

The Fossil Lepadidae, by Mr. Charles Darwin, 5 plates.

" VI. " 1852

The Fossil Brachiopoda, Part I, Tertiary, by Mr. Davidson, 2 plates.

The Fossil Brachiopoda, Part II, No. 1, Cretaceous, by Mr. Davidson, 5 plates.

The Fossil Brachiopoda, Part III, No. 2, Oolitic and Liassic, by Mr. Davidson, 5 plates.

The Eocene Mollusca, Part II, Pulmonata, by Mr. F. E. Edwards, 6 plates.

The Radiaria of the Crag, London Clay, &c., by Prof. E. Forbes, 4 plates.

" VII. " 1853

The Mollusca of the Chalk, Part I, Cephalopoda, by Mr. D. Sharpe, 10 plates.

The Mollusca of the Crag, Part II, No. 2, Bivalves, by Mr. S. V. Wood, 8 plates.

The Reptilia of the Wealden Formations, Part I, Chelonia, by Prof. Owen, 9 plates.

* The volume for the year 1849 consists of two separate portions, each of which is stitched in a paper cover, on which are printed the dates 1848, 1849, and 1850.
CATALOGUE OF WORKS—Continued.

Vol. VIII. Issued for the Year 1854

<table>
<thead>
<tr>
<th>Vol.</th>
<th>Year</th>
<th>Supplement</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX.</td>
<td>1855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X.</td>
<td>1856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI.</td>
<td>1857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XII.</td>
<td>1858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIII.</td>
<td>1859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIV.</td>
<td>1860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XV.</td>
<td>1861</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The Fossil Brachiopoda, Part II, No. 2, Cretaceous, by Mr. Davidson, 8 plates.
- The Reptilia of the Wealden Formations, Part II, Dinosaurs, by Prof. Owen, 20 plates.
- The Fossil Balanidae and Verrucidae, by Mr. Charles Darwin, 2 plates.
- The Mollusca of the Chalk, Part II, Cephalopoda, by Mr. D. Sharpe, 6 plates.
- The Eocene Mollusca, Part III, No. 1, Prosobranchiata, by Mr. F. E. Edwards, 8 plates.
- The Mollusca of the Crag, Part II, No. 3, Bivalves, by Mr. S. V. Wood, 11 plates.
- The Reptilia of the Wealden Formations, Part III, by Prof. Owen, 12 plates.
- The Eocene Mollusca, Part III, No. 2, Prosobranchiata, continued, by Mr. F. E. Edwards, 4 plates.
- The Mollusca of the Chalk, Part III, Cephalopoda, by Mr. D. Sharpe, 11 plates.
- The Tertiary Entomostraca, by Mr. T. R. Jones, 6 plates.
- The Fossil Echinodermata, Part I, Oolitic, by Dr. Wright, 10 plates.
- The Fossil Echinodermata, Part II, Oolitic, by Dr. Wright, 12 plates.
- The Fossil Brachiopoda, Part IV, Permian, by Mr. Davidson, 4 plates.
- The Fossil Brachiopoda, Part V, No. 1, Carboniferous, by Mr. Davidson, 8 plates.
- The Reptilia of the Wealden Formations, Part IV (Supplement No. 1), by Prof. Owen, 11 plates.
- The Reptilia of the London Clay (Supplement), by Prof. Owen, 2 plates.
- The Fossil Echinodermata, Part III, Oolitic, by Dr. Wright, 14 plates.
- The Fossil Brachiopoda, Part V, No. 2, Carboniferous, by Mr. Davidson, 8 plates.
- The Reptilia of the Cretaceous Formations (Supplement No. 1), by Prof. Owen, 4 plates.
- The Reptilia of the Wealden Formations (Supplement No. 2), by Prof. Owen, 8 plates.
- The Polyzoa of the Crag, by Prof. Busk, 22 plates.
- The Fossil Echinodermata, Part IV, Oolitic, by Dr. Wright, 7 plates.
- The Eocene Mollusca, Part III, No. 3, Prosobranchiata continued, by Mr. F. E. Edwards, 6 plates.
- The Reptilia of the Cretaceous Formations (Supplements No. 2, No. 3), by Prof. Owen, 7 plates.
- The Reptilia of the Purbeck Limestones, by Prof. Owen, 1 plate.
- The Fossil Brachiopoda, Part V, No. 3, Carboniferous, by Mr. Davidson, 10 plates.
- The Fossil Brachiopoda, Part V, No. 4, Carboniferous, by Mr. Davidson, 20 plates.
- The Reptilia of the Oolitic Formations, No. 1, Lower Lias, by Prof. Owen, 6 plates.
- The Eocene Mollusca, Part IV, No. 1, Bivalves, by Mr. S. V. Wood, 13 plates.
- The Fossil Brachiopoda, Part V, No. 5, Carboniferous, by Mr. Davidson, 8 plates.
- The Reptilia of the Oolitic Formation, No. 2, Lower Lias, by Prof. Owen, 11 plates.
- The Eocene Mollusca, Part IV, No. 2, Bivalves, by Mr. S. V. Wood, 13 plates.
- The Fossil Brachiopoda, Part V, No. 6, Carboniferous, by Mr. Davidson, 10 plates.
- The Reptilia of the Kimmeridge Clay, No. 2, by Prof. Owen, 1 plate.
- The Fossil Estheriacea, by Prof. Ruperti Jones, 5 plates.
- The Fossil Crustacea, Part II, Gault and Greensand, by Prof. Bell, 11 plates.
- The Fossil Echinodermata, Vol. II, Part I (Oolitic Asteroidea), by Dr. Wright, 13 plates.
- Supplement to the Great Oolite Mollusca, by Dr. Lycett, 15 plates.

* This Vol. is marked on the outside 1855.
† This Vol. is marked on the outside 1856.
CATALOGUE OF WORKS—Continued.

Vol. XVI. Issued for the Year 1862

The Trilobites of the Silurian, Devonian, &c., Formations, Part I, by Mr. J. W. Salter, 6 plates.
The Fossil Brachiopoda, Part VI, No. 1, Devonian, by Mr. Davidson, 9 plates.
The Eocene Mollusca, Part IV, No. 2, Bivalves, by Mr. S. V. Wood, 7 plates.
The Reptilia of the Cretaceous and Wealden Formations (Supplements), by Prof. Owen, 10 plates.

The Trilobites of the Silurian, Devonian, &c., Formations, Part II, by Mr. J. W. Salter, 8 plates.

" XVII. " 1863

The Fossil Brachiopoda, Part VI, No. 2, Devonian, by Mr. Davidson, 11 plates.
The Reptilia of the Liassic Formations, Part I, by Prof. Owen, 16 plates.

The Fossil Echinodermata, Vol. II, Part II (Liassic Ophiuroidea), by Dr. Wright, 6 plates.
The Trilobites of the Silurian, Devonian, &c., Formations, Part III, by Mr. J. W. Salter, 11 plates.

" XVIII. " 1864

The Belemnitidae, Part II, Liassic Belemnites, by Prof. Phillips, 7 plates.
The Trilobites of the Silurian, Devonian, &c., Formations, Part II, by Mr. J. W. Salter, 8 plates.
The Fossil Brachiopoda, Part VII, No. 1, Silurian, by Mr. Davidson, 12 plates.

" XIX. " 1865

Supplement to the Fossil Corals, Tertiary, by Dr. Duncan, 10 plates.
The Fossil Merostomata, Part I, Pterygota, by Mr. H. Woodward, 9 plates.
The Fossil Brachiopoda, Part VII, No. 1, Silurian, by Mr. Davidson, 12 plates.

" XX. " 1866

Supplement to the Fossil Corals, Part IV, No. 1, Liassic, by Dr. Duncan, 11 plates.
The Trilobites of the Silurian, Devonian, &c., Formations, Part IV (Silurian), by Mr. J. W. Salter, 6 plates.
The Belemnitidae, Part VII, No. 2, Silurian, by Mr. Davidson, 10 plates.

Flora of Carboniferous Strata, Part I, by Mr. E. W. Binney, 6 plates.
Supplement to the Fossil Corals, Part IV, No. 2, Liassic, by Dr. Duncan, 6 plates.
The Fossil Brachiopoda, Part VII, No. 3, Silurian, by Mr. Davidson, 15 plates.

" XXI. " 1867

Supplement to the Fossil Corals, Part II, No. 1, Cretaceous, by Dr. Duncan, 9 plates.
The Fossil Merostomata, Part II, Pterygota, by Mr. H. Woodward, 6 plates.
The Fossil Brachiopoda, Part VII, No. 3, Silurian, by Mr. Davidson, 15 plates.
The Belemnitidae, Part IV, Liassic and Oolitic Belemnites, by Prof. Phillips, 7 plates.
The Reptilia of the Kimmeridge Clay, No. 3, by Prof. Owen, 4 plates.

" XXII. " 1868

Supplement to the Fossil Corals, Part II, No. 2, Cretaceous, by Dr. Duncan, 6 plates.
The Reptilia of the Liassic Formations, Part II, by Prof. Owen, 4 plates.
The Crag Cetacea, No. 1, by Prof. Owen, 5 plates.

" XXIII. " 1869

* These Volumes are issued in two forms of binding: first, with all the Monographs stitched together and enclosed in one cover; secondly, with each of the Monographs separate, and the whole of the separate parts placed in an envelope. The previous volumes are not in separate parts.
CATALOGUE OF WORKS—Continued.

Vol. XXIV.* Issued for the Year 1870

The Flora of the Carboniferous Strata, Part II, by Mr. E. W. Binney, 6 plates.
The Fossil Echinodermata, Cretaceous, Vol. I, Part IV, by Dr. Wright, 10 plates.
The Fossil Brachiopoda, Part VII, No. 4, Silurian, by Mr. Davidson, 13 plates.
The Eocene Mollusca, Part IV, No. 3, Bivalves, by Mr. S. V. Wood, 5 plates.
The Fossil Mammalia of the Mesozoic Formations, by Prof. Owen, 4 plates.

Vol. XXV.* 1871

The Flora of the Carboniferous Strata, Part III, by Mr. E. W. Binney, 6 plates.
The Fossil Merosomata, Part III, Pterygotus and Simonia, by Mr. H. Woodward, 5 plates.
Supplement to the Crag Mollusca, Part I (Univalves), by Mr. S. V. Wood, with an Introduction on the Crag District, by Messrs. S. V. Wood, jun., and F. W. Harmer, 7 plates and map.
Supplement to the Reptilia of the Wealden (Iguanodon), No. IV, by Prof. Owen, 3 plates.
The Pleistocene Mammalia, Part IV, Felis pardus, &c., by Messrs W. Boyd Dawkins and W. A. Sanford, 2 plates.
The Pleistocene Mammalia, Part V, Ovis moschatus, by Mr. W. Boyd Dawkins, 5 plates.

Vol. XXVI* 1872

Supplement to the Fossil Corals, Part III (Oolitic), by Prof. Duncan, with an Index to the Tertiary and Secondary Species. 7 plates.
The Fossil Merosomata, Part IV (Stylonurus, Eurypterus, Hemiaspia), by Mr. H. Woodward, 10 plates.
The Fossil Trigonina, No. I, by Dr. Lycett, 9 plates.

Vol. XXVII* 1873

The Fossil Echinodermata, Cretaceous, Vol. I, Part VI, by Dr. Wright, 8 plates.
Supplement to the Fossil Brachiopoda, Part I (Tertiary and Cretaceous), by Mr. Davidson, 8 plates.
Supplement to the Crag Mollusca, Part II (Bivalves), by Mr. S. V. Wood, 5 plates.
Supplement to the Reptilia of the Wealden (Iguanodon), No. V, by Prof. Owen, 2 plates.
Supplement to the Reptilia of the Wealden (Hylaeochampos) No. VI, by Prof. Owen.
The Fossil Reptilia of the Mesozoic Formations, Part I, by Prof. Owen, 2 plates.

Vol. XXVIII* 1874

The Post-Tertiary Entomostraca, by Mr. G. S. Brady, Rev. H. W. Crosskey, and Mr. D. Robertson, 16 plates.
The Carboniferous Entomostraca, Part I (Cypridinace), by Prof. T. Rupert Jones and Messrs. J. W. Kirkby and G. S. Brady, 5 plates.
The Fossil Trigonina, No. II, by Dr. Lycett, 10 plates.

Vol. XXIX* 1875

The Flora of the Carboniferous Strata, Part IV, by Mr. E. W. Binney, 6 plates.
The Fossil Trigonina, No. III, by Dr. Lycett, 8 plates.
The Fossil Reptilia of the Mesozoic Formations, Part II, by Professor Owen, 20 plates.
The Carboniferous and Permian Foraminifera (the genus Fusulinæ excepted), by Mr. H. B. Brady, 12 plates.

Vol. XXX.* 1876

Supplement to the Fossil Brachiopoda, Part II, No. 1 (Jurassic and Triassic), by Mr. Davidson, 8 plates.
Supplement to the Reptilia of the Wealden (Poikilopleuron and Chondrostoeosaurus), No. VII, by Prof. Owen, 6 plates.

* These Volumes are issued in two forms of binding; first, with all the Monographs stitched together and enclosed in cover; secondly, with each of the Monographs separate, and the whole of the separate parts placed in an envelope.
§ II. LIST OF MONOGRAPHS

Completed, in course of Publication, and in Preparation.

1. MONOGRAPHS which have been Completed, and which may be bound as separate Volumes:—

The Carboniferous and Permian Foraminifera (the genus Fusulina excepted), by Mr. H. B. Brady.
The Polyzoa of the Crag, by Mr. G. Busk.
The Tertiary Echinodermata, by Professor Forbes.
The Fossil Cirripedes, by Mr. C. Darwin.
The Post-Tertiary Entomostraca, by Mr. G. S. Brady, the Rev. H. W. Crosskey, and Mr. D. Robertson.
The Tertiary Entomostraca, by Prof. T. Rupert Jones.
The Cretaceous Entomostraca, by Prof. T. Rupert Jones.
The Fossil Estheriae, by Prof. T. Rupert Jones.
The Tertiary, Cretaceous, Oolitic, Liassic, Permian, Carboniferous, Devonian, and Silurian Brachiopoda, by Mr. T. Davidson.
The Mollusca of the Crag, by Mr. S. V. Wood.
Supplement to the Crag Mollusca, by Mr. S. V. Wood.
The Great Oolite Mollusca, by Professor Morris and Mr. J. Lycett.
The Cretaceous (Upper) Cephalopoda, by Mr. D. Sharpe.
The Fossils of the Permian Formation, by Professor King.
The Reptilia of the London Clay (and of the Bracklesham and other Tertiary Beds), by Professors Owen and Bell.
The Reptilia of the Cretaceous, Wealden, and Purbeck Formations, by Professor Owen.
The Fossil Mammalia of the Mesozoic Formations, by Professor Owen.

2. MONOGRAPHS in course of Publication:*

The Flora of the Carboniferous Formation, by Mr. E. W. Binney.
Supplement to the Fossil Corals, by Dr. Duncan.
The Echinodermata of the Oolitic and Cretaceous Formations, by Dr. Wright.
The Fossil Merostomata, by Mr. H. Woodward.

* Members having specimens which might assist the authors in preparing their respective Monographs are requested to communicate in the first instance with the Honorary Secretary.
MONOGRAPHS in course of Publication—Continued.

The Trilobites of the Mountain-Limestone, Devonian, and Silurian Formations, by Mr. J. W. Salter.*
The Malacostraceous Crustacea, by Professor Bell.
Supplement to the Fossil Brachiopoda, by Mr. T. Davidson.
The Trigonidae, by Dr. Lycett.
The Eocene Mollusca, by Mr. S. V. Wood.
The Belemnites, by Professor Phillips.†
The Reptilia of the Wealden Formation (Supplements), by Professor Owen.
The Reptilia of the Kimmeridge Clay, by Professor Owen.
The Reptilia of the Liassic Formations, by Professor Owen.
The Reptilia of the Mesozoic Formations, by Professor Owen.
The Cetacea of the Crag, by Professor Owen.

* Unfinished through the death of the Author, but will be continued by Mr. H. Woodward.
† Unfinished through the death of the Author, but will be continued by Mr. R. Etheridge.

3. MONOGRAPHS which are in course of Preparation:‡—

The Foraminifera of the Liassic, by Mr. H. B. Brady.
The Graptolites, by Professor Sir Wyville Thomson.
The Polyzoa of the Chalk Formation, by Mr. G. Busk.
The Paleozoic Polyzoa, by Dr. Duncan.
The Crinoidea, by Professor Sir Wyville Thomson.
Supplement to the Tertiary and Cretaceous Entomostraca, by Prof. T. Rupert Jones.
The Wealden, Purbeck, and Jurassic Entomostraca, by Messrs. T. Rupert Jones and G. S. Brady.
The Post-Tertiary Mollusca, by Dr. J. Gwyn Jeffreys.
The Cretaceous Mollusca (exclusive of the Brachiopoda), by the Rev. T. Wiltshire.
The Purbeck Mollusca, by Mr. R. Etheridge.
The Inferior Oolite Mollusca, by Mr. R. Etheridge.
The Rhaetic Mollusca, by Mr. R. Etheridge.
The Liassic Gasteropoda, by Mr. Ralph Tate.
The Ammonites of the Liassic, by Dr. Wright.
The Ganoid Fishes of the Carboniferous Formation, by Prof. Traquair.
The Ganoid Fishes, by Mr. L. C. Miall.
British Fossil Elephants, by Prof. Leith Adams.

‡ Members having specimens which might assist the authors in preparing their respective Monographs are requested to communicate in the first instance with the Honorary Secretary.
§ III. Dates of the Issue of the Yearly Volumes of the Palæontographical Society.

The Volume for 1847 was issued to the Members, March, 1848.

1848, March, 1849.
1849, June, 1850.
1850, June, 1851.
1851, June, 1851.
1852, August, 1852.
1853, December, 1853.
1854, May, 1855.
1855, February, 1857.
1856, April, 1858.
1857, November, 1859.
1858, March, 1861.
1859, December, 1861.
1860, May, 1863.
1861, May, 1863.
1862, August, 1864.
1863, June, 1865.
1864, April, 1866.
1865, December, 1866.
1866, June, 1867.
1867, June, 1868.
1868, February, 1869.
1869, January, 1870.
1870, January, 1871.
1871, June, 1872.
1872, October, 1872.
1873, February, 1874.
1874, July, 1874.
1875, December, 1875.
1876, December, 1876.
§ IV. SUMMARY OF THE MONOGRAPHS ISSUED TO THE MEMBERS (up to DECEMBER, 1876): showing in the first column whether each Monograph hitherto published be complete, or in the course of completion; in the second column, the yearly volumes which contain each particular Monograph (as a guide to binding the same); and in the fourth and following columns, the number of pages, plates, figures, and species described in the different Monographs.

<table>
<thead>
<tr>
<th>I. SUBJECT OF MONOGRAPH</th>
<th>II. Dates of the Years for which the volume containing the Monograph was issued.</th>
<th>III. Dates of the Years in which the Monograph was published.</th>
<th>IV. No. of Pages of Letterpress in each Monograph.</th>
<th>V. No. of Plates in each Monograph.</th>
<th>VI. No. of Lithographed Figures and Woodcuts.</th>
<th>VII. No. of Species described in the Text.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Flora of the Carboniferous Strata, by Mr. E. W. Binney, in course of completion</td>
<td>1867, 1870, 1871, 1872</td>
<td>1868, 1871, 1872, 1875</td>
<td>147</td>
<td>24</td>
<td>141</td>
<td>16</td>
</tr>
<tr>
<td>The Crag Foraminifera, by Messrs. T. Rupert Jones, W. K. Parker, and H. B. Brady, of completion</td>
<td>1865</td>
<td>1866</td>
<td>78</td>
<td>4</td>
<td>211</td>
<td>43</td>
</tr>
<tr>
<td>The Carboniferous and Permian Foraminifera (genus Fusulina excepted), by Mr. H. B. Brady, complete</td>
<td>1876</td>
<td>1876</td>
<td>166</td>
<td>12</td>
<td>266</td>
<td>62</td>
</tr>
<tr>
<td>Tertiary, Cretaceous, Oolitic, Devonian, and Silurian Corals, by MM. Milne-Edwards and J. Haine, complete (2)</td>
<td>1849, 1851, 1852, 1863, 1854</td>
<td>1850, 1851, 1852, 1853, 1855</td>
<td>406</td>
<td>72</td>
<td>800</td>
<td>319g</td>
</tr>
<tr>
<td>Supplement to the Fossil Corals, by Prof. Duncan, in course of completion</td>
<td>1865, 1866, 1867, 1868, 1869, 1870, 1872</td>
<td>1866, 1867, 1868, 1869, 1870, 1872</td>
<td>232</td>
<td>49</td>
<td>797</td>
<td>119</td>
</tr>
<tr>
<td>The Polyzoa of the Crag, by Mr. G. Bask, complete</td>
<td>1857</td>
<td>1859</td>
<td>145</td>
<td>22</td>
<td>611</td>
<td>122</td>
</tr>
<tr>
<td>The Tertiary Echinodermata, by Prof. Forbes, complete</td>
<td>1852</td>
<td>1852</td>
<td>39</td>
<td>4</td>
<td>144</td>
<td>44</td>
</tr>
<tr>
<td>The Oolitic Echinodermata, by Dr. Wright. Vol. I, complete (1)</td>
<td>1855, 1856, 1857, 1858</td>
<td>1857, 1858, 1859, 1861</td>
<td>474</td>
<td>43</td>
<td>724</td>
<td>1094</td>
</tr>
<tr>
<td>" " Vol. II, in course of completion</td>
<td>1851, 1854</td>
<td>1866, 1869, 1870, 1872, 1873, 1875</td>
<td>264</td>
<td>68</td>
<td>802</td>
<td>82</td>
</tr>
<tr>
<td>The Cretaceous Echinodermata, by Dr. Wright. Vol. I, in course of completion</td>
<td>1864, 1865, 1866, 1867, 1868, 1869, 1870, 1871, 1872</td>
<td>1864, 1865, 1871, 1872, 1873, 1875</td>
<td>137</td>
<td>7</td>
<td>320</td>
<td>54</td>
</tr>
<tr>
<td>The Fossil Cirripedes, by Mr. C. Darwin, complete</td>
<td>1865, 1866, 1871, 1872</td>
<td>1866, 1869, 1870, 1872</td>
<td>180</td>
<td>30</td>
<td>219</td>
<td>35</td>
</tr>
<tr>
<td>The Fossil Merostomata, by Mr. H. Woodward, in course of completion</td>
<td>1874</td>
<td>1874</td>
<td>237</td>
<td>16</td>
<td>515</td>
<td>134</td>
</tr>
<tr>
<td>The Post-Tertiary Entomostraca, by Mr. G. S. Brady, Rev. H. W. Crosskey, and Mr. D. Robertson, complete</td>
<td>1855</td>
<td>1857</td>
<td>74</td>
<td>6</td>
<td>233</td>
<td>56</td>
</tr>
<tr>
<td>The Tertiary Entomostraca, by Prof. Rupert Jones, complete</td>
<td>1819</td>
<td>1850</td>
<td>41</td>
<td>7</td>
<td>176</td>
<td>27</td>
</tr>
<tr>
<td>The Cretaceous Entomostraca, by Prof. Rupert Jones, complete</td>
<td>1874</td>
<td>1874</td>
<td>56</td>
<td>5</td>
<td>285</td>
<td>50</td>
</tr>
<tr>
<td>The Carboniferous Entomostraca, by Prof. Rupert Jones and Messrs. J. W. Kirkby and G. S. Brady, in course of completion</td>
<td>1860</td>
<td>1863</td>
<td>139</td>
<td>5</td>
<td>158</td>
<td>107</td>
</tr>
<tr>
<td>The Fossil Echinoderms, by Prof. Rupert Jones, complete</td>
<td>1862, 1863, 1864, 1866</td>
<td>1861, 1865, 1866, 1867</td>
<td>216</td>
<td>31</td>
<td>703</td>
<td>114</td>
</tr>
<tr>
<td>The Trilobites of the Mountain-limestone, Devonian, Silurian, and other Formations, by Mr. J. W. Salter (incomplete through the Author's death)</td>
<td>1856, 1860</td>
<td>1858, 1863</td>
<td>88</td>
<td>22</td>
<td>215</td>
<td>50</td>
</tr>
<tr>
<td>The Malacostroacous Crustacea (comprising those of the London Clay, Gault, and Greensand) by Prof. T. Bell, in course of completion</td>
<td>1850, 1852, 1853, 1854</td>
<td>1851, 1852, 1853, 1855</td>
<td>409</td>
<td>42</td>
<td>1855</td>
<td>160</td>
</tr>
<tr>
<td>Fossil Brachiopoda, Vol. I. The Tertiary, Cretaceous Oolitic, and Liassic Brachiopoda, by Mr. T. Davidson, complete</td>
<td>1856, 1857, 1858, 1859, 1860</td>
<td>1853, 1854, 1855, 1861, 1863</td>
<td>331</td>
<td>59</td>
<td>1900</td>
<td>157</td>
</tr>
<tr>
<td>" " Vol. II. The Permian and Carboniferous Brachiopoda, complete</td>
<td>1862, 1863, 1865, 1866, 1868, 1870</td>
<td>1863, 1865, 1866, 1867, 1869, 1871</td>
<td>528</td>
<td>70</td>
<td>2766</td>
<td>321</td>
</tr>
<tr>
<td>" " Vol. III. The Devonian and Silurian Brachiopoda, complete</td>
<td>1774</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CARRIED FORWARD... 4541 617 14,218 2152
1

25

(N

J>

OS

CO

>»
IM

Et»5E
""3 8

00
rH
<N

o

iO
CO

ID

<N
N

(N

T-4

rH
oo

rH
os

1A

CO

©

co
CO

rH
CO

"H<

OS

Oi

tH

rH

^

00

rH
co

t>.
ICS

113

ICS

co

oo

t>

CM

CO

o.

CO

OS
rH

CO

O

»

co

H
lO

0)
rH
*a

in

h3S o

2

Ph

a a

CO

•#

i-H

Tjt

<N

CO

(N
00

<N
CO
01

I—

)

IN
00

W

OS
<N
rH

00
<N
rH

j-H

0)

Ph
H-

g
OS

p,

«

^

00
rH CO

r«

«

CD

io

is

5;

lO

rH

CO
50

OS

18

CO
00
rH

co

CO
-00
i

-*

3h

o.

rS

o

3

3
Ef

off

n n

00
rH

iS
00
rH

S:
00
rH

»5
00

to
00

^

«s
oo

CO
»n

_<

2

pq

tO
00

«J
rH

r^

00
°u
rH

CD
00
oo

30

CD

rH

rH

in
CO

3

ucs

rft

r>
00

H

00

H

00
rH

us*

Cs"

CD
00

CD
00
rH

rH

CO
CO
00
rH

o
l>
00

oo
CD
00

1-H

u

o

J>
00
rH

O

Tj

H

cd"

CO

^
^

cs «ij

as

rH

H

30

rH

.2 oa

a
S °

..2

'»>^3

CD

oo

O

<»

O

« « «
§

.s

?
tto

it

00

°o
rH

00
j

og

I g

J

S g
3 s>o

35
rH

"Sg
^ §
o

<5 oo

tsf

to*

„- 00

CD
00

lO
00

oj
CO
CD

*
h 55«
H
eft

SO

iOh

00
H

oo
iO

J>

;

ICS

1

00

°°

CO

OS

"
o =

CD

£
£
00 00
rH

J2

"?
CO

as

=
CO
00

<•>

^=
.2

CC

S

«

S2
W3

°

-s

.9
'S

•=!

cs

Ph^3

c;
.£3

os
CD

==

-C3

Ph

as

w
rt
S
rH

cn

co

00

»a

to "tw
Q) 03

'£J 'co

h

g

»
J;

g|

rg^

^

a

s

§
to"

cs

rS

fill
o
c a
cc
r<

!z '5
CQ
cs

M rS

£

10
=P
cs

c
rl

Ph

6
O

rH

,5

«
§

S>>

,o

CJ

T3

r^
ft

r2
"fe>

02

*
p.

P
Ph

S

O

Ph

Ph

^1

B
.2
.3

o> Ph

aTs-

a

as

as

^

Eh
.

.o

a
a

o

O

0)

£
>

bp

-

S

S

|

o

^

0)

1-3

P3

Ph

5

t£

o

a

rt

s

^

S

Oh

a!

as

O

O

&h

Ph

a

a «

a
CJO

^

to.

3
r2
rV
o,

S

00

W
A2
H

PH
e-

pq

^
o

^3

Ch

Oh

as

as

Ph

Ph

as

cs

P

rl

.2
rl

OS

cs

OS

W

Ph

^
H H
rl

HSt
«
as

^)
Eh

H

EH

CS

OS

EH

H
4


§ V. Stratigraphical Table exhibiting the British Fossils already figured and described in the Annual Volumes (1847—1876) of the Palæontographical Society.

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>PLANTS</th>
<th>PROTOZOA.</th>
<th>RADIATA.</th>
<th>ARTICULATA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleistocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crag</td>
<td></td>
<td></td>
<td>1849</td>
<td>1852</td>
</tr>
<tr>
<td>Eocene</td>
<td></td>
<td></td>
<td>1849</td>
<td>1852</td>
</tr>
<tr>
<td>Cretaceous</td>
<td></td>
<td></td>
<td>1849 1860</td>
<td>1851 1860</td>
</tr>
<tr>
<td>Wesden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oolite</td>
<td></td>
<td></td>
<td>1851 1872</td>
<td>1855 1856, 1857, 1858, 1861</td>
</tr>
<tr>
<td>Liassic</td>
<td></td>
<td></td>
<td>1851 1860</td>
<td>1855 1856, 1857, 1858, 1860, 1861</td>
</tr>
<tr>
<td>Triassic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboniferous</td>
<td>1867</td>
<td>1870 1871</td>
<td>1876 1872</td>
<td>1874 1860</td>
</tr>
<tr>
<td>Devonian</td>
<td></td>
<td></td>
<td>1853</td>
<td></td>
</tr>
<tr>
<td>Silurian</td>
<td></td>
<td></td>
<td>1854</td>
<td></td>
</tr>
<tr>
<td>Cambrian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note.—The numbers in the above List refer to the Volumes issued for those Dates.
Stratigraphical Table exhibiting the British Fossils already figured and described in the Annual Volumes (1847—1876) of the Palæontographical Society (continued).

<table>
<thead>
<tr>
<th></th>
<th>MOLLUSCA.</th>
<th>VERTEBRATA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleistocene</td>
<td>...</td>
<td>1873</td>
</tr>
<tr>
<td>Crag</td>
<td>1857</td>
<td>{1852, 1873}</td>
</tr>
<tr>
<td>Eocene</td>
<td>...</td>
<td>{1852, 1873}</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>...</td>
<td>{1852, 1854, 1873}</td>
</tr>
<tr>
<td>Wealden</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Oolitic</td>
<td>...</td>
<td>{1850, 1852, 1876}</td>
</tr>
<tr>
<td>Liassic</td>
<td>...</td>
<td>{1850, 1852, 1876}</td>
</tr>
<tr>
<td>Triassic</td>
<td>...</td>
<td>1876</td>
</tr>
<tr>
<td>Permian</td>
<td>1849</td>
<td>1849, 1856</td>
</tr>
<tr>
<td>Carboniferous</td>
<td>...</td>
<td>{1856, 1857, 1858, 1859, 1860}</td>
</tr>
<tr>
<td>Devonian</td>
<td>1862, 1863</td>
<td>...</td>
</tr>
<tr>
<td>Silurian</td>
<td>...</td>
<td>1865, 1866, 1868, 1870</td>
</tr>
<tr>
<td>Cambrian</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Note.—The numbers in the above List refer to the Volumes issued for those Dates.
THE

PALÆONTOGRAPHICAL SOCIETY.

INSTITUTED MDCCCXLVII.

VOLUME FOR 1876.

LONDON:
MDCCCLXXVI.
A MONOGRAPH

OF

CARBONIFEROUS AND PERMIAN

FORAMINIFERA

(THE GENUS FUSULINA EXCEPTED).

BY

HENRY BOWMAN BRADY, F.R.S.,
FELLOW OF THE LINNEAN AND OF THE GEOLOGICAL SOCIETIES OF LONDON; CORR. IMP. GEOL. INSTIT. VIENNA, ETC.

Pages 1—166; Plates I—XII.

LONDON:
PRINTED FOR THE PALÆONTOGRAPHICAL SOCIETY.
1876.
CONTENTS.

§ 1. Introduction .. 1
§ 2. General Considerations 4
§ 3. Zoological Considerations 8
§ 4. History .. 18
§ 5. Nomenclature .. 23
§ 7. Bibliography .. 51
§ 8. Description of Genera and Species 56
§ 9. Distribution Tables 152
A MONOGRAPH
OF
CARBONIFEROUS AND PERMIAN
FORAMINIFERA
(THE GENUS FUSULINA EXCEPTED).

§ 1. INTRODUCTION.

A few words of preface seem necessary by way of commentary on the title,—at any rate an author may claim an opportunity at the very outset to explain the origin of his work, to state its aim and limitations, and to acknowledge, in part at least, the services of those who have helped him in its preparation.

The geographical extent of the geological formations, one minor phase of whose history the present memoir is intended to illustrate, forbids the idea of exhaustive treatment; but whatever approach to completeness it may possess, even within the present range of ascertained facts, is due to assistance proffered with no ordinary kindness from many different quarters.

In the year 1869 I was asked by my friend Mr. Charles Moore, F.G.S., of Bath, to determine for him a number of Foraminifera, which he had met with in "pockets" in the Mountain Limestone, during his researches on mineral veins. This was practically the origin of the present Monograph. I was at that time engaged upon the Liassic Foraminifera, and had little knowledge of those of earlier geological age beyond what was to be gained from transparent sections of Carboniferous Limestone rocks; and, in the absence of published observations, sufficiently detailed and accurate to serve as a key to the collection, Mr. Moore's specimens were studied rather from the standpoint furnished by a limited number of Liassic forms than on a fitting independent basis. The provisional determinations so made have naturally required much revision, as the relations of the fauna of the period to which they refer have come to be better known. The zoological
interest of the unstudied palæozoic types eventually induced me to lay aside the work I had been engaged upon, and to devote my scanty leisure to their elucidation, under the impression that the total number of species was very small, and that I should soon be able to revert to my former task—an idea by no means verified by experience.

Whilst Mr. Moore was pursuing his researches chiefly in the lead-mining districts of England, Mr. John Young, F.G.S., of Glasgow, had been forming a collection of the minuter fossils from the Scottish coal-fields, and on learning that I was occupied upon a portion of the subject, with characteristic kindness placed his gatherings of Foraminifera at my disposal.

Subsequently my friend Mr. W. W. Stoddart, F.G.S., of Bristol, proffered me the use of his fine collection of microscopical sections of limestone rocks, and rendered further valuable aid by procuring for me supplies of material from various localities in the neighbourhood of Clifton. To the more recent friendly offices of Mr. R. Etheridge, junr., F.G.S., and other officials of the Geological Survey of Scotland, I am indebted for the opportunity of working out the fossil Rhizopoda of a very considerable portion of the North-British Carboniferous area.

With the name of Mr. John Young it is natural to associate that of his assiduous colleague Mr. David Robertson, F.G.S., the results of whose microscopical researches, always most freely communicated, have served to fill many a blank in the Distribution Tables. Nor must I omit from this general acknowledgment my thanks, more particularly expressed on a later page, to Mr. G. A. Lebour, F.G.S., late of the Geological Survey of England and Wales, for his assistance in the more strictly geological portion of my work.

There are many others to whom I am under obligation scarcely less considerable than those who have been mentioned, either for supplies of rough material from places to which I have had no access, or for the loan of specimens. In a subsequent section (that headed "Geological and Geographical"), wherein each locality is separately named, opportunity is taken to acknowledge such contributions individually, and I trust that no omissions may have occurred through chance inadvertence.

It is to the hearty co-operation of so many scientific men who have had, from one cause or other, peculiar facilities for observation and for the collection of material in particular fields, that the present Monograph owes any claim it may have to be regarded as representative in respect to England and Scotland, and in so far as the term can be applied to a very meagre instalment, to Ireland also.

To the active interest of my friend M. Ernest Vanden Broeck, of Brussels, in all that concerns recent and fossil Protozoa, I owe the chance that I have enjoyed of examining some of the Carboniferous shales of Belgium, especially from the neighbourhood of Namur and Liège, and the results have so important a bearing upon the aspects of the Rhizopod-fauna of our own rocks that the original intention to restrict the scope of the synopsis to British fossils has been necessarily abandoned.
INTRODUCTION.

To the courtesy and kindness of General G. von Helmersen, of St. Petersburg, I am indebted for the means of studying the minute fossils of the white Carboniferous limestones of the neighbourhood of Moscow and elsewhere in Russia, the Foraminifera of which formed the subject of the researches of Fischer von Waldheim, Rouillier and Vosinsky, Ehrenberg, and d’Eichwald; and Dr. Herrman Abich, of Tiflis, in Georgia, has placed me under the like obligation for rock-specimens of similar age from the Caucasus.

To Dr. F. B. Meek, of Washington, Dr. C. A. White, late State-Geologist of Iowa, Professor H. L. Smith, of Geneva, New York, and Dr. S. B. Buckley, State-Geologist of Texas, I am beholden for similar attentions in respect to the Carboniferous strata of the United States.

With so large an accumulation of material, the question arose whether the whole subject of the Carboniferous Foraminifera might not be treated in a single paper, and, having gone through the minuter forms, my attention was naturally turned to the important group, not represented at all in our British fossiliferous rocks, constituting the genus Fusulina. I found, however, before I had proceeded far in this direction, that my friend Dr. Guido Stache, of Vienna, was already at work upon the genus in its geological relations; and it became evident that the zoological and structural details which had been in part worked out might with advantage be withheld for the moment, and the history of this generic type, in its extensive and varied aspects, reserved for a separate paper at some future time.

The intimate natural relationship which subsists between the limited Rhizopod-fauna of the Permian formations and the more extensive one of the Carboniferous epoch has necessitated their collateral study; and as this has resulted in some additions to the knowledge of the former group, and considerable revision of its nomenclature, the history of the two is presented, as it has been worked out, in one series. To the friendly co-operation of Dr. R. Richter, of Saalfeld, in a variety of ways, any completeness which the portions referring to the Thuringian Zechstein may possess is due.

Thus it has come about that what was originally projected as a Monograph of British Carboniferous Foraminifera only, has become the more comprehensive treatise, geographically and geologically, indicated by its present title.

One word more to finish personal matters. In the authorship of many previous papers, Professor W. K. Parker, F.R.S., and Professor T. Rupert Jones, F.R.S., have been my colleagues. Whilst my attention has been occupied with these investigations they have been engaged in other departments of science. None the less have I had the advantage of discussing with them questions of difficulty as they have arisen, and if their names do not appear very frequently in the following pages, it is only because I prefer to make this more general acknowledgment. After all, the present work is little more than a continuation of research on the lines which they laid down originally, and which we have so long followed in company; and their general approval of the conclusions it embodies is perhaps its best letter of introduction.
§ 2. GENERAL CONSIDERATIONS.

That the Mountain Limestone rocks, which constitute so striking a geological feature in the scenery of many parts of Great Britain, consist largely of chambered shells and other microscopic organisms, which, until a few years ago, were spoken of collectively under the indefinite term "Infusoria," is a belief that has probably existed ever since men first wondered at the "fossil animalcules" in Chalk; yet up to the present time nothing has been written concerning the Rhizopoda of the Carboniferous age that has any claim to be regarded as a history of the group. Perhaps, it is hardly too much to say that the relation of the Foraminifera to the calcareous rocks of the Carboniferous period has been assumed rather than studied; and, as is commonly the case, views which have gained currency under such circumstances are but partially substantiated by actual observation. Take them as a whole, the Carboniferous Limestone beds of Great Britain cannot be regarded as a microzoic formation in quite the sense in which the term is rightly applied to many Cretaceous rocks: indeed, as a rule, they owe their origin, so far as their organic constituents are concerned, much more to animals of higher organization and larger individual dimensions, such as Crinoids and Corals, than to Microzoa. As is well known, there are many important deposits of Secondary and Tertiary age formed almost exclusively of the remains of Foraminifera, such as, for example, the White Chalk of the South-east of England, the Nummulitic Limestones of Central Europe, the Leythakalk of the Vienna Basin, and the Miliolite limestones of Hampshire and elsewhere; and a similar condition exists also in certain massive deposits of Carboniferous age, to wit, the white limestones of Russia, Central Asia, and North America; but in the Carboniferous rocks of our own country no portion of the vast series of beds known in common parlance as "Mountain Limestone" has any claim to be placed in the same category, except it be the comparatively inconsiderable section in which the very simple form known as *Saccammina* is found.

At first sight some of the microscopical sections of Carboniferous rocks represented in the final plate of the present paper might lead to a different conclusion, but it must be remembered that the specimens from which these figures were taken were selected for the very reason that they contained unusual numbers of Foraminifera in a limited space—the object being to illustrate the various aspects of the Foraminifera themselves, *in situ*, rather than the general structure and composition of the rocks. It is very rarely indeed that such a nest of minute forms as that shown in fig. 2 is to be found; far more frequently the field of an inch or an inch-and-a-half object-glass reveals but two or three
specimens; and very often sections even of the most promising limestones do not show a single rhizopod test when submitted to microscopic examination.

So far from owing its origin, like the true Chalk, chiefly to Foraminifera; or indeed, to go further, so far from being a deposit formed directly and exclusively by the agency of animals secreting carbonate of lime, there are considerable areas of Carboniferous Limestone in which the sea appears to have deposited its excess of mineral constituents in accordance with chemical and physical laws, without the intervention to any great extent of animal life. This has been brought about by a process of precipitation and the subsequent coalescence of the impalpable particles of amorphous precipitate into minute spheroids, the result being a concretional or oolitic limestone (often fossiliferous at the same time), such as may be met with in formations of Devonian and Silurian as well as of Carboniferous age. The constituent spheroids of such rocks have generally a radiate structure, and in sections show one or more concentric rings; the centre is often occupied by a foreign body, such as a minute crystal, the fragment of a coral, or even a foraminifer, though more commonly there is no observable nucleus. The section represented in Plate XII, fig. 3, though showing a number of spheroidal concretions, is scarcely characteristic; it would require a much larger space and a lower magnifying power to give quite a correct idea of the general structure. The oolitic grains are normally nearly spherical, but they also assume ovoid, elongate, or quite irregular forms, such shapes resulting either from the partial coalescence of two or more spheroids, the distinct origin and structure of which are easily traced up to a certain stage in the process of coalescence, or else from the irregular outline of the foreign body upon which the precipitated carbonate of lime has begun to arrange itself, the accumulation not having gone on long enough to produce a complete sphere. There need be no difficulty in the acceptance of a physical explanation of this sort, even by those who hold most firmly the theory that all limestones have primarily an organic origin. It has repeatedly been urged that, to account for the azoic condition of the deep-sea bed, in areas where evidence of animal life might have been expected, it was necessary to remember the solvent power of water charged with carbonic acid; — that, especially under pressure, water so charged must dissolve the calcareous skeletons of organisms subjected to its action. Of this fact there can be no doubt: what does not appear to have been sufficiently taken account of is the converse, viz. that the solution so formed is a very unstable one, and that, on the diminution of pressure, the elevation of temperature, or other alteration of physical conditions, the carbonate of lime, so taken up, is as rapidly precipitated, the form in which it presents itself on precipitation being precisely the one most favorable to the process of spherical coalescence.¹

¹ It is, perhaps, needless to refer particularly to Mr. Rainey’s elaborate researches on spherical coalescence, as his papers are already well known, and they relate chiefly to the process as carried on in the animal economy. The manufacture of carbonate of magnesia on the large scale from magnesian limestone offers an excellent illustration of the solution of earthy carbonates in water charged with carbonic acid, their precipitation by increase in temperature, and the subsequent coalescence of the precipitated particles.
We need go no further than the magnesian limestone of the Permian system to find deposits in which this phenomenon is exhibited in an exaggerated degree; but instead of a compact rock composed chiefly of spheroids of minute, but comparatively uniform size, the constituent masses vary in magnitude from a microscopic smallness to balls many ounces or even pounds in weight, and form a loose "pebbly" bed. Whence the carbonate of lime has been derived, in the case of the oolitic Carboniferous rocks, previous to its solution and precipitation, it is impossible to say, possibly from the calcareous skeletons of animals; all that it is sought to establish is, that the proximate origin of these particular beds has been dependent in great measure on physical agencies. That the process of precipitation was cotemporaneous with the actual life of marine animals there can be no doubt, from the frequent presence, amongst the spheroids, of perfect, delicate shells, such as would be the first to yield to the power of any active solvent, and the same fact also forbids the idea that the spheroidal structure may have been the result of physical changes at a later period of the earth's history.

The minute structure of the Carboniferous and Permian rocks only affects the subject incidentally; but it seemed necessary at the outset to state the great difference which exists between the calcareous beds of the Carboniferous period, as represented in our Mountain Limestones, and those of Cretaceous age represented by the White Chalk. In point of fact, the marine Carboniferous deposits of these islands seem to bear far more analogy to the preceding palaeozoic formations—to the Devonian especially, with its multitude of Corals and Crinoids, and its scanty evidence of the minuter Protozoa, than to the microzoic rocks of a later epoch.

The lithological characters of the massive palaeozoic limestones are the cause of the chief difficulties the palaeontologist has to contend with. They are almost invariably hard and generally subcrystalline. They are often largely impregnated with silica, thereby possessing an uneven texture, which renders uniform grinding, whether for the purpose of microscopical sections or for the sake of obtaining a polished surface, almost impossible, and yet disintegration, under ordinary circumstances, cannot be effected by artificial means. When free from siliceous infiltration, it is not more difficult to cut thin slices from them than from other rocks of similar hardness; but the mere sections of Foraminifera so obtained are of little value, zoologically speaking, unless they can be identified by comparison with specimens in which the external characters are visible and readily determined, that is to say, specimens freed from the matrix.

But that which is so difficult to accomplish by artificial means is sometimes done for us on a large scale by natural agencies; that which chemical solvents, whether rapid or more gradual in their action, and physical processes, such as calcination, the efflorescence of crystallised salts, or treatment by superheated steam under high pressure, effect to only a limited extent when artificially applied, is brought about under favorable conditions by

1 One of the beds at Fulwell Quarry, near Sunderland, for example.
GENERAL CONSIDERATIONS.

slow meteorological influences, namely, by the gradual action of air, moisture, carbonic acid, alternations of temperature and the like, through long periods of time. So that in the absence of fossiliferous clays of marine origin, which in later geological formations are the most productive source of Foraminifera, recourse may be had to those particular portions of the limestone strata in which partial disintegration has been brought about by the means alluded to. Thus, the decomposed friable layer, which is often found overlying the hard rock, and between it and the superficial soil, may often be examined with advantage. The marly partings between the seams of limestone, weathered calcareous shales, or the thin earthy plates, such as are occasionally found interbedded with compacter rocks, yield similar valuable material. At best the sources of Foraminifera are very uncertain, and in the majority of cases, after much washing, drying and sifting, the result is nothing beyond a little grey heap consisting of the débris of Encrinites, Polyzoa, occasional molluscan Shells, and a few Entomostraca. Frequently, especially in the neighbourhood of ironstone deposits, the fossils, especially the minuter ones, are so corroded as to be identified with difficulty. But notwithstanding the large proportion of examinations that must be made with nothing but negative results, there is still a residuum sufficiently productive and interesting to reward the collector.

The method of the following pages has been determined by the conditions under which subject is approached. Clean specimens free from the matrix have been employed, as far as practicable, as the basis of description, both of external characters and internal structure; the principal, if not the only, exceptions being in the case by some two or three species accepted on the authority of other observers, in which there has been no available means of verification. In addition to the figures of external form, drawings of sections of individual Foraminifera have been as far as possible introduced with the object, primarily, of illustrating the structural features of each species, but also to facilitate their recognition as they present themselves in sections of hard limestones. With the exception of some half dozen figures of Permian specimens, which are in each case marked as "copied," the whole of the figures in the accompanying plates have been drawn direct from nature, and they represent actual specimens with all their imperfections, as they are, not what they may have been. They were for the most part originally drawn by myself, but practically they have been redrawn in their transfer to the stone by my friend Mr. A. T. Hollick. The fidelity of Mr. Hollick's work is now too well known to need commendation from me; and I have only to express my thanks to him for the care and pains which, in spite of considerable difficulties, have ensured results so satisfactory.
§ 3. ZOOLOGICAL CONSIDERATIONS.

The Rhizopod-fauna of the Carboniferous and Permian epochs is not without interest in some of its zoological phases. The relation of its various component types to each other will be better discussed when describing the individual genera, but the salient general features by which it may be compared with the corresponding groups of other geological periods, the bearing of ascertained facts upon accepted theories of classification, and other kindred matters, form a subject for separate consideration.

Four distinct systems have been proposed at different times for the classification of the Foraminifera. That of D’Orbigny in 1826 had a purely artificial basis, and has now fallen into disuse, whilst that of Professor Max Schultze, published in 1854, has never been extensively adopted. Neither of these need be dwelt upon.

The schemes of classification worked out independently by Professor Von Reuss in Vienna, and by Dr. Carpenter, Mr. W. K. Parker, and Professor T. Rupert Jones in this country, and published almost simultaneously (i.e. in 1861 and 1862), are alone in use at the present time, and their essential features are practically identical, notwithstanding many differences in detail. Minute criticism would be out of place here, and is the less needed because amongst those who have worked much upon the subject there would be a pretty general agreement in the opinion that the English arrangement is laid down on broader lines,—that in it more importance is attached to the natural relationship of the series of forms traceable to a single type, and less to mere morphological variations;—whilst that of Professor Von Reuss, with its smaller groups and somewhat more artificial distinctions, has considerable advantages in the facilities it affords for the naming and arrangement of specimens. But the fact that concerns us at the moment is that in these two independent systems the basis of their primary divisions is the structure of the shelly investment or test.

In general terms Foraminifera are divided into the same two classes—those with non-porous or imperforate, and those with porous or perforate tests. The former of these two divisions ("Imperforata") is in both systems, subdivided into two sections, one including those types which have composite tests, that is, built up of sand-grains,

1 Since the above was written Prof. T. Rupert Jones’s paper on "Variability of Form in Foraminifera" has been published in the ‘Monthly Microscopical Journal’ (February 1st, 1876). It contains a list of genera arranged in smaller groups than the classification formerly proposed by the same author and his colleagues, though accepting the same general basis. It would be an injustice to express an opinion on so short an acquaintance, and the proposed scheme does not materially affect the arrangement of the Carboniferous species.
or similar extraneous bodies, more or less embedded in calcareous cement, the other having opaque, porcellaneous shells, of fine texture.

In the division comprising the perforate or porous-shelled forms the agreement is less complete, as might be expected with the larger number of types to be accommodated and the greater diversity in their characters; but even in this the two classifications have very much in common.

Their general relationship will perhaps be best understood by a comparative table, such as the following:

<table>
<thead>
<tr>
<th>Von Reuss, 1861.</th>
<th>Carpenter, Parker, and Jones, 1862.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Foraminifera with non-porous tests.</td>
<td>Sub-order— Imperforata.</td>
</tr>
<tr>
<td>A. With arenaceous tests.</td>
<td>Family— Gromida.</td>
</tr>
<tr>
<td>1. Lituolidea.</td>
<td>Family— Lituolida.</td>
</tr>
<tr>
<td>2. Uvclidea.</td>
<td>Family— Miliolida.</td>
</tr>
<tr>
<td>B. With compact, porcellaneous, calcareous shells.</td>
<td>Sub-order— Perforata.</td>
</tr>
<tr>
<td>1. Squamulinidea.</td>
<td>Family— Lagenida.</td>
</tr>
<tr>
<td>2. Miliolidea.</td>
<td></td>
</tr>
<tr>
<td>4. Orbitulinidea.</td>
<td></td>
</tr>
<tr>
<td>B. Foraminifera with porous shells.</td>
<td></td>
</tr>
<tr>
<td>A. With glassy, finely porous, calcareous shells.</td>
<td></td>
</tr>
<tr>
<td>1. Spirillinidea.</td>
<td></td>
</tr>
<tr>
<td>2. Ovulitidea.</td>
<td></td>
</tr>
<tr>
<td>4. Cristellaridea.</td>
<td></td>
</tr>
<tr>
<td>5. Polymorphinidea.</td>
<td></td>
</tr>
<tr>
<td>7. Textilaridea.</td>
<td></td>
</tr>
<tr>
<td>8. Cassidulinidea.</td>
<td></td>
</tr>
</tbody>
</table>
B. With exceedingly porous, calcarceous shells.

1. Rotalidea.

C. With calcarceous shells, traversed by a ramified canal-system.

1. Polystomellidea.
2. Nummulitidea.

Note.—Professor A. E. von Reuss's classification is taken from the "Postscript" to his paper "Entwurf einer systematischen Zusammenstellung der Foraminiferen," not from the body of the memoir. The primary division into "Foraminifera Monomera" and "Foraminifera Polymera," originally laid down, is abandoned in the postscript. His group Gromidea, corresponding with the Gromida of the English observers, is omitted entirely in the revised scheme. In the proximate correlation of the two classifications, given above, the principal discrepancy occurs in the sub-order Perforata. The Lagenida and Globigerinida together are almost exactly coextensive with Von Reuss's two sections B, A and B, but the (1) Spirilliniidea, (2) Oeulitidea, (7) Textilariidea, and (8) Cassidulinidea, together with one or two genera from other groups, find place amongst the Globigerinida of the British classification, and the family Lagenida is correspondingly reduced in extent. The family Nummulinida corresponds exactly with Von Reuss's section B, C.

In his latest memoir ("Das Elbthalgebirge in Sachsen," 2ter Theil, 1874) Professor Reuss again somewhat modified his classification, making three primary groups of equal zoological value, and reversing the order originally adopted, thus:—A. Kalkschalige Foraminiferen, B. Porenlose Foraminiferen, C. Kieselschalige Foraminiferen; but the general features of the classification are otherwise unchanged.

It will be seen at a glance that the "families" of the German arrangement are much smaller and more numerous than those adopted by the English naturalists, but this is counterbalanced by the more comprehensive "generic types" of the latter. The essential difference, not only between the two systems of classification, but in the entire methods of study and nomenclature, lies in the different values of their respective "genera" and "species." A purely artificial classification is ill adapted to the conditions presented by a class of organisms like the Foraminifera, largely made up of groups of which the modifications run in parallel lines. This "isomorphism," demonstrated chiefly by the labours of Messrs. Parker and Jones, whilst it is the source of most of the difficulties the systematist has to contend with, is at the same time the key to the natural history of the order as at present accepted. It exists not merely between a single series, in one of the larger divisions, and a single series in another, but often amongst several series even of the same family. It not unfrequently happens that a member of one group presents a greater similarity to its isomorph in another group with which it has no relationship, than it does to any other member of its own. Take a familiar illustration—suppose the fingers of the
two hands to represent the modifications ("species") of two such parallel types of Foraminifera, the thumb of one hand resembles more closely the thumb of the other hand than it does any other of the fingers on its own. In other words, the extreme member of one series bears greater similarity to its isomorph in the other series than it does to its own nearer relations, and so on through the remaining members of the respective groups. Under conditions like these, artificial subdivision based upon minor morphological characters is certain to infringe the order of nature, owing to its tendency in some cases to separate forms closely allied, and in others to place together such as have no natural affinity.

The disposition to variation in minor characters is another point that has not been sufficiently recognised, and an endless multiplication of "species," with almost hopeless confusion in nomenclature, is the result. Take, as an example, a series of forus belonging to the sub-order Perforata, say that of which the best central type is Nodosarina (Marginulina) raphanus. All the specimens referable to the type consist of a single row of segments joined end to end; the row may be straight, arcuate, coiled a little at the base (crozier-shaped), or helicoid; the individual segments may be rounded, cylindric, somewhat compressed laterally, much flattened, or embracing; the general aperture may be central or excentric; the surface of the shell may be smooth or have an ornamentation of parallel ribs, spines, or tubercles; whatever the precise form of the investment, the animal, so far as we know, is the same—a single row of bead-like lobes of sarcode, with no power to build for itself other than a perfectly simple shelly covering. Between the extremes of character possible within the limits above laid down every conceivable intermediate condition has been found; and if the word "species" is anything more than a conventional term, the whole ought to constitute a single species; but governed by the exigencies of a partially artificial arrangement, the modifications embraced in this simple unbroken series constitute thirteen genera or almost two entire families in Professor Reuss's classification; and how many hundreds, if not thousands, of so-called "species" have been founded upon the trivial characters above enumerated it would need much patience to ascertain.

To revolutionise the present nomenclature of the Foraminifera is no part of the object of this essay; if that is ever attempted it must be from a broader standpoint than the Carboniferous Rhizopod-fauna affords. It is impossible to start de novo, and it is therefore only left for us to determine what course is open to the least objection under the conditions that at present exist. So far as "specific" names go, it is manifestly best to accept those that represent tolerably well-marked morphological characters, even when they are matters of degree and manifestly variable, but without attaching any true specific value to them. The advantages of a binomial nomenclature are universally admitted; but in the present state of natural history science it is impossible to express the details of zoological relationship thereby, and we must either use a trinomial or even quadrinomial method of designation, or be content with names whose uniformity does not
indicate that they represent assemblages of individuals of the same zoological distinctness collectively. Most of the generic terms which have come into general use have been applied to groups of Foraminifera more or less circumscribed, though often overlapping other similar groups in a way to render complete separation impossible; but to reject them entirely because they do not fulfil conditions that might properly now be exacted, would throw the whole nomenclature into confusion by necessitating the alteration of very many “specific” names. No harm is done by the employment of these quasi-generic terms so long as their significance is understood, though their acceptance is a compromise dictated by convenience. For similar reasons it seems best to avoid as far as possible the trinomial use of “varietal” names when the relationship of the subordinate forms has once been sufficiently indicated. But after making every allowance, and admitting the title of even slight modification of characters to recognition by a distinctive name, there are still enormous numbers of so-called “species” that are absolutely synonymous, and right of precedence once determined, the more completely the remainder are cleared away the better for scientific terminology.

It seems strange to have to insist on zoological characters as the only right foundation for species; but to judge by the sort of criticism which the results of the purely zoological treatment of fossil Foraminifera by my colleagues and myself in past years have called forth in some continental publications, one might suppose that it was an almost unheard-of proposition. The practice of re-naming organisms, zoologically identical, every time they present themselves at a fresh geological horizon is still largely adopted, on the ground that in the absence of any evidence of continuity a new creation must be assumed, and that a new specific name becomes a necessary consequence, conclusions alike untenable. It would be just as reasonable to found such an argument on geographical as on geological conditions. Widely different geological age may be admitted to have some weight in doubtful cases, but only as an addition to zoological evidence, not in contradiction to it.

These preliminary observations lead to questions more directly affecting the Carboniferous and Permian fauna; and in reviewing its general aspect and relations we shall find it convenient to take the larger groups of the English classification *seriatim*, and pretty much in the order in which they appear in the foregoing table. In following this course, however, I must guard against the supposition that this, or indeed any classification as yet proposed, accords quite satisfactorily with the existing state of our knowledge, though it may answer our present purpose as well as a more elaborate scheme.

Commencing with the *Imperforata*:—the family *Gromida* may be dismissed in a word, without even questioning its right to the position it occupies, inasmuch as no fossil Rhizopoda with chitinous tests have hitherto been recorded, and the very nature of their investment renders their discovery improbable. The *Miliolida* may be passed over almost in like manner, for no porcellanous forms have been met with in deposits
of Carboniferous or Permian age, the earliest known representatives of the family being the *Nubeculariae* of the Triassic and the *Spireoloculinae* of the Lower Liassic clays. But the entire absence of these two families is counterbalanced by the comparatively large representation of the second on the list, and some of the most noteworthy facts elicited in the course of these investigations are in connection with the history of the arenaceous and sub-arenaceous types constituting the *Lituolida*.

First in point of order stands the genus *Saccammina*, the only true rock-builder (using the term as it might be applied to *Fusulina* or *Nummulina*) amongst the British Carboniferous Foraminifera—structurally a most simple organism, standing apart from the rest of the group, interesting to the geologist from its stratigraphical limitations, and to the zoologist for its sudden disappearance with the Carboniferous period, and its reappearance in a new form as a Post-pliocene fossil, or living in the deep water of our northern seas. The three prominent genera of *Lituolida*,¹ namely, *Lituola*, *Trochammina*, and *Valvulina*, all appear in great strength, together with *Endothyra*, an essentially Carboniferous type, hitherto but little studied.

Lituola (proper) is represented by large rough examples both of its nautiloid and crozier-shaped varieties, and the non-labyrinthic *Haplophragmium* by a single small and delicate variety.

Of *Trochammina* there are no less than nine distinct modifications, mostly of the non-septate division of the genus, one variety only showing any regular segmentation. But the genus *Valvulina* obtains the most unexpected enlargement from the study of the palaeozoic types. Ehrenberg many years ago figured a single species, first assigning it to *Textilaria*, and afterwards instituting a new genus, *Tetrataxis*, for its reception; but this is only one of a long series of forms which further research has brought to light. The mutual relations of these genera is best traced by the examination of recent specimens, and under favorable conditions all of them may be found off our own shores. The careful study of a large set of specimens obtained from dredgings taken on the west coast of Scotland has clearly shown, as I have elsewhere stated,² that the three groups form one unbroken series, in which the supposed distinctive characters of the genera become confused and lost. This applies chiefly to the feeblcer and smaller varieties, and need not affect the nomenclature in general use; but it is important in a zoological sense, and cannot be ignored in a scheme of classification.

The genus *Valvulina* in an especial manner has been a stumbling-block to systematists. In its normal and best developed condition it presents a thick, arenaceous

¹ That is to say, of the *Lituolida*, as constituted by Dr. Carpenter and his colleagues before the family had been enlarged by the discovery of certain recent deep-water types of Rhizopoda, the exact position of which cannot yet be very positively affirmed—such as *Astrorhiza*, *Botellina*, *Pilulina*, *Rhabdammina*, and others, some of them not even named as yet—none of which materially affect the present subject.

test, as stout and sandy externally as *Lituola*; but not unfrequently the sandy coat is found to be a mere incrustation upon a porous shell, and specimens often occur which are quite porous and smooth externally. So that, although assigned to the *Lituolida* from its close affinity to the typical Lituoline genera, *Valvulina* might with almost equal propriety have been placed amongst the *Globigerinida*, in the sub-order *Perforata*. The characters of the Carboniferous species strikingly confirm this view of *Valvulina* as an intermediate group. A large proportion of them are externally smooth; perhaps in the majority of cases they are none the less really arenaceous, but if so, the constituent sand-grains and the cement in which they are embedded are alike calcareous, and the composite structure of the test is less evident than when the sandy particles are siliceous. But in some of the species (notably *V. bulloides*) the test, though not always smooth, is usually distinctly porous, and a transparent section of the shell does not differ materially from that of corresponding members of the *Perforata*.

We are confronted with a new intermediate group in the genus *Endothyra*, a type hitherto unstudied, and known only from the section of a specimen figured by Professor Phillips thirty years ago. Somewhat higher in organization than *Valvulina*, and in its modifications strikingly isomorphic with the Rotaline series, *Endothyra* is never conspicuously sandy, never labyrinthic as to its interior structure, and even when the shell is thick and somewhat coarse in texture, it is still smooth externally. Normally the test is opaque and imperforate, but young examples of some species are often so hyaline that the interior arrangement of the chambers may be traced through the outer convolutions, and these thin-shelled specimens may occasionally be porous also.

To the list of intermediates must be added a number of uniserial forms which here receive collectively the generic name *Nodosinella*. They are not a little obscure in their structure and affinities, but seem to bear the same sort of relation to the Nodosarine genera that *Endothyra* bears to the Rotaline. They are, as has been said, uniserial, thicker-shelled than their hyaline isomorphs, and normally imperforate. What has been said of the structure of the test in *Valvulina* applies in most respects to the genus *Nodosinella* as found in the Carboniferous rocks, even to some minute particulars not needful to be entered upon here. In general terms the specimens differ in shell-texture from the moniliform *Lituola* in much the same degree as the typical *Trochammina* differs from the rougher Lituoline varieties.

There is yet one more of these ambiguous groups—that comprising the adherent forms to which I have given the generic name *Stacheia*, a group whose simplest modification consists of a single row of rounded parasitic segments, but which in its more complex development shows some degree of isomorphism with the Rotaline genera *Planorbulina*, *Tinoporos*, and *Polytrema*. The minute structure of the test in *Stacheia* in its complex forms cannot be satisfactorily decided from the specimens hitherto met with, owing to alterations in microscopic characters produced by the process of fossilization; but it may be assumed from that of the simpler varieties, which not only present the same sort of
ultimate structure as Valvulina—that is to say, for the most part subarenaceous and imperforate, though often thin-walled, but also show a striking similarity in the interior subdivision of the segments.

We have, then, in the Carboniferous fauna these four genera, embracing in their modifications a very remarkable series of forms, occupying a position between the two great sub-orders into which the Foraminifera are divided, not rightly belonging to the Imperforata, if the definition be strictly read, though in close affinity to the most strikingly imperforate types, but equally removed from the Perforata.

These intermediates, whether amongst individuals, species, genera, or larger groups, furnish the test under which artificial schemes of classification break down; but if the object in view be to trace the natural sequence of forms, rather than to establish a system of definitions, the evidence they yield is precisely that which is most valuable. It has been suggested that "the progress of knowledge will eventually break down all sharp demarcations, and substitute series for divisions" in zoological classifications;¹ and if it be so, as indeed can scarcely be doubted, intermediate forms have a significance too important to be ignored merely for the sake of upholding the current definitions of existing groups. Not that this need alter, at any rate in the present case, the general mode of treatment. The division of the Foraminifera into "Imperforata" and "Perforata" is exceedingly convenient, and in the main rests on a sound natural basis; and if increased observation tends more and more to break down this boundary-line in common with other sharp demarcations, any alternative that could be proposed in the existing state of knowledge would be open to objection of the same kind, varying only in degree. So long, therefore, as their true relation to the series is understood, it is not very material on which side of the line at present recognised the transition-group that has been described is placed; and accepting as a guide the position assigned to Valvulina, it follows naturally that genera so closely allied should be classed with it amongst the Imperforata.

There is another phase of this subject which must be alluded to in passing, namely, the relation of the intermediate types, the modifications of which form so important an item in the Carboniferous fauna, to the Rhizopoda of subsequent geological epochs. It is true that a few truly arenaceous species have been met with in Carboniferous rocks, and that all of the three families of the "Perforata" are also represented, though how sparingly, except for the genus Fusulina, we shall presently see; but the fact still remains, that by far the largest number of Carboniferous Foraminifera, both of species and individuals, belong to genera which under some conditions have arenaceous imperforate tests, and under others are smooth and in some cases perforate. That these should be followed in geological time by one set of isomorphs—much more characteristically sandy, and by another set of isomorphs distinctively hyaline and porous, is a very significant fact. Take a single instance—the simple uniserial, quasi-Nodosarian type Nodosinella, found in the Carboni-

ferous beds, which is arenaceous, smooth, or only slightly rough as to its surface, and normally imperforate. In the Permian magnesian limestones this is largely replaced by the true Nodosarian type, but in its simplest modifications. A few lingering specimens of the older form still recur up to the Middle Permian beds, but except for their larger size and somewhat thicker tests, they are scarcely distinguishable from their hyaline isomorphs. In deposits of later age we have two distinct and well-defined series, the one normally much more arenaceous, the other much more hyaline, than their Carboniferous prototype. Direct evidence of continuity cannot be adduced in such a case; but, if we accept its possibility, it is not unreasonable to suppose that these early quasi-Nodosarians are the precursors, not to say the lineal ancestors, of two still living, and now widely separated, groups of Foraminifera.

It is not needful to press this argument by pursuing it through other Carboniferous genera and their more recent isomorphs; to do so successfully would require more knowledge than at present exists as to the relative age of Carboniferous beds widely separated geographically; but any one familiar with the various modifications of the Rotaline genera will not fail to be struck with the possibility of their common ancestry in the genus Endothyra.

Turning to the Perforata, we must be prepared for very different conditions of distribution, the contrast being possibly greater in the number of individuals (if we except the genus Fusulina) than in the number of species represented. Thus, in the family Lagenida the list embraces but three very rare and somewhat obscure Carboniferous forms of Lagenae and a few simple Permian Nodosarinae. The second family, Globigerinida, has its principal development in the genus Textularia, the larger, rough varieties of which are common in the Carboniferous, the small, delicate, ambiguous examples being found very locally distributed in the Permian rocks. It is worth remembering that Textularia is almost as difficult a genus to place satisfactorily in any natural classification as Valvulina. Its best and most characteristic type, T. agglutinans, is as rough and sandy as Lituola itself, and frequently as labyrinthic in its internal structure; and between this and the transparent, delicate, perforate forms, the genus shows every gradation of texture. But in Textularia the thin-shelled, porous varieties constitute the larger part of the genus, whilst in Valvulina the reverse is the case. Were it determined to establish an intermediate sub-order for the reception of the variable genera at present classed with the Lituolida, a course that would relieve the existing classification of many anomalies, Textularia would find its natural place in company with Endothyra and Valvulina, the common types of the Carboniferous age, with Involutina of the Lias, Verneuilina and Buliminia (Ataxophragminum) of the Chalk, and some other similar generic and quasi-generic groups.

Besides Textularia, the only representatives of the Globigerinida in the Carboniferous fauna are very rare examples of three Rotaline genera, Planorbulina, Pulvinolina, and Calecarina, and their distribution is exceedingly limited, being confined to one or at most
two Belgian localities. As the recognition of these types at so early an epoch involves consequences of considerable importance, extreme care has been taken in the verification of the geological position of the rocks from which the specimens were obtained. Happily confirmatory evidence of considerable weight is supplied by their lithological condition, which under the microscope is almost exactly similar to that of the minute fossils of the Fusulina-beds of some parts of Russia and North America, and there is really no room to doubt that they are of Carboniferous age: but from a zoological point of view it would be very satisfactory to meet with the same species under conditions more favorable to the preservation of minute peculiarities of form and structure. The earliest occurrence geologically of any member of this group, previously recorded, is that of Pulvinulina cassiana (Gümbel) from the St. Cassian marls of the Alpine Trias, the earliest English example being the closely allied Pulvinulina elegans (d'Orb.), found by Messrs. Parker and Jones in the Upper Triassic or Rhaetic Clay of Derbyshire. The Carboniferous specimens are unfortunately not only few as to number, but very obscure in their morphological characters, but they are of interest as carrying the history of the Rotaline genera into Paleozoic times.

The importance of the Nummulinida as a family of Carboniferous Foraminifera rests chiefly on the genus Fusulina, which holds a similar position in the later Palaeozoic fauna to that occupied by Nummulina and its allies at the beginning of the Tertiary epoch. As it is proposed that the genus Fusulina should form a subject for separate treatment, the facts which have been gathered from its fresh study need not at present be touched upon, though there is a great deal, especially in the characters of some of its less familiar varieties, of much significance in its bearing on the morphology and development of the Nummulite itself.

But in addition to Fusulina, the family is represented by minute specimens of three other genera, Archaeodiscus, Amphistegina, and Nummulina. The first of these, Archaeodiscus, a type as rudimentary in its organization as is compatible with Nummuline structure, makes perhaps the earliest appearance in point of time, and of the three it alone can be said to be even moderately common or widely distributed. Amphistegina, regarded hitherto as an essentially Tertiary and recent genus, is represented by one or two very minute but quite characteristic specimens, whilst Nummulina has only been obtained as yet from a circumscribed portion of the Belgian limestones. The absence of any known data for the determination of the relative age of the Carboniferous beds, of areas widely separated geographically, renders it impossible to draw zoological inferences with precision, as to the succession of species in the upper palaeozoic rocks, and the Foraminifera themselves are scarcely available for anything more than collateral evidence.

From what has been said it will be gathered, that the principal points in the general aspect of the Carboniferous and Permian Rhizopod-fauna are:—1st. That the prevalent forms (except Fusulina) do not belong, in a strict sense, to either of the two suborders
into which the Foraminifera have been divided, but rather to intermediate types, which are neither invariably arenaceous nor uniformly perforate in their shell-texture. 2nd. That in the modifications of these primitive intermediate types some varieties occur which are conspicuously sandy and imperforate, others that are essentially hyaline and porous; and there are not wanting indications that their varietal peculiarities have been transmitted as permanent characters, thereby becoming the origin of the two parallel isomorphic series. 3rd. From negative evidence—that the porcellaneous imperforate group (Miliolada) is of later creation. 4th. That the Permian Rhizopod-Fauna is very limited as compared with the Carboniferous, being confined to five generic types (Trochammina, Nodosinella, Nodosaria, Textularia, and Fusulina), representing, however, at least four distinct families of Foraminifera.

§ 4. HISTORY.

It would be profitless labour to attempt now to determine at what period the idea first gained credence that portions of the earth's crust were largely made up of the remains of minute testaceous animals; but that the fact was recognised in its full significance before the end of the last century, and in a measure understood, the beautiful folio volumes of the Abbé Soldani abundantly testify. The palæontological sections of Soldani's "Testaceographia" relate chiefly to the Sub-Appenine clays of Tuscany; but other observers followed, Fichtel and von Moll and Lamarek to wit, as exponents of the Foraminifera of various earlier Tertiary formations, and by the year 1840, thanks to the labours of d'Orbigny and Ehrenberg, the structure of many rocks of Cretaceous and even of Liassic age had been investigated, and their more or less microzoic character satisfactorily established.

Somewhat previous to this date, however, that is to say, in the year 1829, Fischer de Waldheim, in his 'Oryctographie du Gouvernment de Moscou,' in giving an account of the white Carboniferous limestones of Russia, had described the important genus Fusulina. His description and figures are sufficient for purposes of identification; and, judged with due regard to the state of knowledge at the time, even the structural features of the genus are fairly rendered. Two other minute Carboniferous fossils regarded by Fischer as Foraminifera, and described under the names Spiralinites sulcata and Sp. denticulata, cannot now be identified. The figures do not represent any known type of Rhizopoda, and they have probably been erroneously classed by the author.

1 For the sake of accuracy, and to avoid needless iteration of details, the titles of all works and papers referred to are given in full under the head "Bibliography."

It may here be stated that, for the reasons named in the "Introduction," matters pertaining to the genus Fusulina, when introduced at all, are throughout very cursorily treated.
HISTORY OF OBSERVATIONS.

Excepting this account of the genus *Fusulina*, the earliest mention of Carboniferous Foraminifera appears to be in a communication read by Dr. Buckland before the Ashmolean Society of Oxford in 1841, announcing the discovery of their remains by Mr. Darker and Mr. Tennant, in specimens of Mountain Limestone from Derbyshire. The following is the paragraph relating to the subject in the "Abstracts of the Proceedings of the Ashmolean Society."

"A paper was read by Professor Buckland on the agency of animaleules in the formation of limestone. Dr. Buckland began by exhibiting some polished thin slices of Stonesfield Slate lately presented to him by Mr. Tennant, which Mr. Darker had discovered to be crowded with microscopic shells. He also announced that Mr. Darker and Mr. Tennant have discovered microscopic shells to abound in thin slices of certain strata of Derbyshire limestone, and proceeded to discuss the question how far the abundance of such remains in the Carboniferous and Oolitic limestones, and in the Chalk and Tertiary formations justifies the revival which has been attempted since the microscopic discoveries of Ehrenberg of the old and false dogma 'omnis calx e vermibus; omnis silex e vermibus; omne ferrum e vermibus.'"

Mr. Weaver, in allusion to the same subject, states that this discovery was made by Mr. Tennant in 1839, and adds that in 1840 Mr. Lonsdale had also found Foraminifera in large numbers in thin slices of Kendal limestone.

In 1842 Dr. Ehrenberg presented to the Royal Academy of Berlin a notice of some Polythalamia from the Mountain Limestone of Lake Onega in Russia; and in the following year he reported to the Academy the results of his examination of a number of fossiliferous deposits, amongst them a "Mountain Limestone hornstone" from Tula. Little is to be gathered from the short abstracts of these papers which appear in the 'Proceedings of the Academy.' The whole of the determinations seem to have been revised for his great work, the 'Mikrogeologie,' published a few years later, and as no important question of precedence depends on the earlier communications, notice of the species named in them may be left till we come to speak of the latter memoir.

In 1845 Professor Phillips, in a paper on the "Remains of Microscopic Animals in the Rocks of Yorkshire," described and figured two Foraminifera from the Mountain Limestone of that county. One of these is a doubtful *Textularia* which is not named by the author, the other the horizontal section of a Rotaliform test, to which the name *Endothyra Bowmanni* is appended. At best a single transparent section of a shell is not a satisfactory basis on which to establish a species, still less as the foundation of a genus; but taking all the circumstances into account, there can be little doubt that the specimen figured does represent a type previously undescribed, and the generic term *Endothyra* may properly be accepted for it and its allies. Professor Phillips's specific name has been

1 Vol. i, No. xvii, p. 35, March 2nd, 1841.
adopted in the present work for the particular modification which best agrees in general contour and septation with the figured section.

In 1849 MM. Roullier and Vosinsky contributed to the 'Bulletin of the Society of Naturalists of Moscow' an account of a supposed Nummulite (*Num. antiquior*) from the white limestone of Miatschkovo. The paper is one of some interest, although, as suggested by d'Eichwald, who a few years later had the opportunity of seeing the original specimens, the authors were probably incorrect in assigning them to the genus *Nummulina*.

In the same year Prof. F. M'Coy described under the name *Nodosaria fusulinaformis* a Foraminifer abounding in the Carboniferous Limestone at Shivey in the north of Ireland. It is not improbable that this fossil may be the same as *Saccammina Carteri*, but the very brief description unaccompanied by any figure is scarcely sufficient to establish the fact, in the absence of collateral evidence.

Meanwhile the Foraminifera of the Permian limestones had begun to attract the attention of palaeontologists and in the year 1848 Dr. H. B. Geinitz and Prof. William King described, independently, the species now well known as *Trochammina pusilla*. Two years later (1850) Prof. T. Rupert Jones contributed to Prof. King's 'Monograph of the Permian Fossils of England' descriptions and figures of some half dozen species. In 1854 Prof. Reuss added a single form from the Zeelstein of Wetterau, and in the following year Dr. R. Riehter, of Saalfeld, summarised the species found in the Zeelstein of Thuringia, but without the addition of anything new.

Turning again to the Carboniferous fauna. In 1854 was published Ehrenberg's 'Mikrogeologie;' and in 1860 d'Eichwald's 'Lethaea Rossica.' In these two works may be found details of almost all the observations of any value which had been made up to that time on the microzoa of the Carboniferous limestones of central and southern Russia. The method of observation and of illustration adopted by the veteran microscopist are very unfortunate so far as the Foraminifera are concerned, and in this department of natural history at least, whether in respect to recent or fossil forms, his actual results must be accepted in some measure independently of his zoological inferences. His nomenclature also needs considerable modification before it is intelligible to those who are accustomed to the generally received generic and specific terms. Messrs. Parker and Rupert Jones ('Ann. and Mag. Nat. Hist.,' 4th ser., vols. ix and x) have performed the task of translating into the language of modern zoology the terminology of Dr. Ehrenberg's various memoirs, including that of the 'Mikrogeologic,' which may be regarded as the summary of his labours on fossil Rhizopoda. Unfortunately the beautiful figures of Carboniferous Foraminifera in the latter work, excepting those of an interesting group of *Fusulinae*, are of little scientific value. Few of the representations of the minuter forms can be identified, for want of detail in the drawing; and, apart from the *Fusulinae* referred to, only a single recognisable new species is gained to science.

D'Eichwald's synopsis of the Russian Carboniferous Foraminifera is based chiefly on
the labours of Ronillier and Vosinsky and Ehrenberg. He describes, however, four new species, the precise value of which it is very difficult to arrive at. It is to be regretted that there is now no chance of determining the doubtful forms by a comparison of specimens, for M. d’Eichwald states, in a letter to the author, that there were originally very few of them, and what there were have long since been given away and lost sight of.

In 1856 Prof. James Hall, of Albany, N. Y., described a foraminifer from the Carboniferous Limestone of Indiana and Illinois under the name Rotalia Baileyi. On examination the morphological characters of this species are found to be identical with those of Endothyra Bowmanii, though the individual specimens are, on the average, of much larger dimensions, and are better developed than any hitherto met with on this side of the Atlantic. The difference, however, is only such as may be found in almost every species, and is to be looked upon as the result of more or less favorable conditions of growth, rather than as the expression of any more important zoological distinction.

In 1861 Dr. Geinitz, with the help of Prof. Reuss and Dr. Richter, summarised the Foraminifera of the Permian system of Central Germany, in his great memoir on the Dyas. He figures in all thirteen species, and of these seven are regarded as new to science, namely, five Nodosaria and two Textularia. The minuteness and indistinctness of several of the figures are a great drawback to their usefulness, and in some instances leave one really in doubt as to what they are intended to represent. In 1867 the literature of the microzoa of the Zechstein formation received a further accession in a paper by Prof. E. E. Schmid, of Jena; but his drawings, so far as the Foraminifera are concerned, generally illustrate individual modifications of well-known forms rather than new species or important varieties. At the same time some morphological interest attaches to one or two of his figures, particularly to a non-septate Trochammina, partially unrolled and irregularly sinuous in contour, named by the author Serpula filum.

There remains but one other memoir in this division of the subject requiring notice here—Messrs. Jones, Parker, and Kirkby, ‘On the Permian Trochammina pusilla and its Allies.’ This is, in point of fact, a synopsis of the Permian species of the genus Trochammina with their synonymy, posted up to the date of publication—1869; and as such is a valuable contribution to the history of the group.

We turn once more to the literature of the Carboniferous fauna. In 1868 Principal Dawson, of Montreal, described a Nodosaria-like foraminifer from a Canadian white limestone under the name Dentalina priscilla, but not without some hesitation (expressed in a letter to the author) as to its generic affinity. A comparison of this little fossil with some similar organisms of Carboniferous age seems to indicate that its proper place is amongst the thick-shelled imperforate forms to which, for reasons that will be stated in due course, the new generic term Nodosinella has been applied.

In 1869 I essayed to prepare a list of the species of Foraminifera, Carboniferous and Liassic, collected by my friend Mr. Charles Moore, of Bath, during his researches on mineral veins. A new field seemed opened by the variety of forms brought to light by
Mr. Moore, and in the provisional report, which was hastily drawn up to be in time for the Meeting of the British Association for that year, there is much that now needs revision. The subarenaceous perforate tests of nearly all the specimens then examined suggested their affinity to the Liassic genus *Involutina*, and names were assigned to the different species on this supposition. The priority of Professor Phillips's generic term *Endothyra* (since ascertained), by supplying a name for the Rotaliform series, renders it unnecessary, for the moment, to weigh minutely the value of the characters of Terquem's Liassic type, which at present appears to rest on a somewhat indefinite and unsatisfactory basis. As will appear in due course, a considerable number of the specific names originally applied to Mr. Moore's specimens, may still be used without alteration.

In 1871 Mr. E. Parfitt, of Exeter, published a notice of a "Species of Arenaceous Foraminifer (?) from the Carboniferous Limestone of Devonshire," describing appearances in the weathered surfaces of certain limestones, which appeared to him to suggest the remains of a fossil Protozoan, either sponge or foraminifer, but most probably an arenaceous foraminifer. I confess that, upon very careful examination, after treatment in every way that could be thought of as likely to bring out structural features, I have been unable to find any satisfactory evidence of organic origin in the specimens kindly furnished to me by Mr. Parfitt; and as the matter so rests for the present, it is not needful to enter upon its further discussion. Transparent sections presented no unusual lithological characters, none that could not be accounted for without the introduction of any organic hypothesis.

Three papers published between the years 1871 and 1874, viz., "On Saccammina Carteri," "On Archædiscus Karreri," and "On a True Carboniferous Nummulite," together with the lists of species from Scottish localities, included in the Geological Survey publications relating to the Lanarkshire coal-field and in the papers of Messrs. Young and Armstrong, may be passed over with bare mention, as they practically form a part of the present Monograph.

Such, in outline, is the history of research in respect to the smaller Rhizopoda of the Carboniferous and Permian Epochs: that of the genus *Fusulina*, with its attendant zoological and geological problems, remains to be written.

1 The recent paper by Herr L. G. Bornemann, jun. ("Über die Foraminiferengattung Involutina"), notwithstanding. This, though it contains observations of considerable value, is far from satisfactory in many ways, chiefly perhaps in the estimate of the relative importance of minute characters, and hence in the zoological treatment of the type.
§ 5. NOMENCLATURE.

The following summary exhibits in chronological order the materials upon which the nomenclature of the present Monograph is based. The list is in the main restricted to papers containing descriptions or figures of new species, real or supposed. Corrected names (when correction is necessary) are given in the right-hand column; and the first employment of the name taking precedence is indicated by printing it in capital letters.

Carboniferous.

\[
\begin{align*}
&Melonia (Borelis)\text{-}sph\ddot{a}roidea. \\
&Borelis\text{ constrieta.} \\
&Borelis\text{ princeps.} \\
&Alceolina\text{ prisca.} \\
\end{align*}
\]

\[
\begin{align*}
&Texitaria\text{ lunata, species indeterminable.} \\
&Rotalia\text{ antiqua, a rotaliform cast wanting in detail, probably} \\
&Crystellaria\text{ (?) mysteriosa, no description nor} \\
&Melonia\text{ (?) labyrinthus.} \\
&Tetrataxis\text{ conica.} \\
\end{align*}
\]

\[
\begin{align*}
&Endothyra\text{ Bowmanni.} \\
\end{align*}
\]

\[
\begin{align*}
&Nummulina\text{ antiquior.} \\
\end{align*}
\]

\[
\begin{align*}
&Nudosaria\text{ fusulinaformis.} \\
\end{align*}
\]

Fusulina, sp.

Fusulina, sp.

Textularia, sp.

Endothyra, sp.

Endothyra Bowmani, Phillips.

Fusulina, sp.

Probably Saccammina Carteri, Brady.
1854. Ehrenberg, “Mikrogeologie.”
Genera, Borelis and Alveolina (many species).
Textilaria paleotrochus.
Tetralaxis conica.
Grammostomum bursigerum.
Textilaria falcata.
Textilaria lagenosa.
Textilaria lunata.
Textilaria recurvata.
Nodosaria index
Rotalia antiqua.

Rotalia Baileyi.

Nonionina rotula, indeterminable, probably Nonionina globolus.
Textilaria eximia.
Fusulina cylindrica, Fischer.
Orobias antiquior, Rouil. and Vosinsky.
Orobias aequalis.
Cristellaria mysteriosa, Ehrb.
Rotalia antiqua, Ehrb.

1868. Dawson, Acadian Geology, 2nd ed.
Dentalina priscilla.

1869. Brady, Brit. Assoc. Reports, Exeter Meeting.¹
Involutina cylindrica.
Involutina incerta.
Involutina recta.
Involutina lobata.
Involutina radiata.
Involutina crassa.
Involutina obliqua.
Involutina vermiciformis.

¹ A number of doubtful forms provisionally referred to Terquem’s Liassic species were inserted in the lists furnished to Mr. C. Moore for his Report. Further investigation has shown some of these names to be unnecessary, and such as have no bearing on the present state of our knowledge are here omitted.
NOMENCLATURE.

Involutina macella.
Carteria, sp.
Nodosaria (?) and Dentalina (?).

Saccammina Carteri.

Textularia antiqua, Brady, MS.
Involutina conica, Brady, MS.
Involutina radiata, Brady.
Involutina lobata, Brady.
Saccammina Carteri, Brady.

Archaediscus Karreri.

Archaediscus Karreri.
Climacamina antiqua, MS.
Endothyra ammonoides, MS.
Endothyra Bowmani.
Endothyra globulus.
Endothyra ornata, MS.
Endothyra radiata.
Textularia gibbosa.
Trochammina centrifuga, MS.

Trochammina gordialis.

Trochammina incerta.
Valvulina decurrens, MS.
Valvulina paleotrochus.

" " var. compressa, MS.

Endothyra macella, Brady.
Saccammina Carteri, Brady.
Nodosinella, sp.

Climacamina antiqua, Brady.
Valvulina paleotrochus (Ehrenberg).
Endothyra radiata, Brady.
Endothyra Bowmani, Phillips.

Archaediscus Karreri, Brady.
Valvulina Youngi, MS.
Valvulina Youngi, var. contraria, MS.
Valvulina plicata, MS.
Webbina acervalis, MS.

Nummulina pristina.

Permian.

Serpula pusilla.

Foraminites serpuloides.

Serpula (?) pusilla.
Spirillina, sp.
Dentalina permiana.
Dentalina Kingii.
Textularia triticum.
Textularia cuneiformis.

Vol. for 1851–1853.
Nodosaria Geinitzi.

1861. Geinitz, Dyas, vol. i.
Nodosaria duplicans, Richter.
Nodosaria subacicula, Richter.
Nodosaria Geinitzi, Reuss.
Nodosaria Kingii, Reuss.
Nodosaria Kirkbyi, Richter.
Nodosaria Jonesi, Richter.
Dentalina permiana, Jones.
Dentalina Kingii, Jones.

{ Doubtful organisms.
Nodosaria radicula (Linné).

1 I have omitted these two and Textularia Geinitzi from the list of recognised Foraminifera with the full approval of Dr. Richter.
NOMENCLATURE.—LOCALITIES.

Textularia cuneiformis, Jones.
Textularia triticum, Jones.
Textularia multilocularis, Reuss.

Textularia Geinitzi, Richter.
Serpula pusilla, Geinitz.

1867. SCHMID, Neues Jahrb. für Min., &c.—Jahrg. 1867.
Serpula Roessleri.
Serpula filum.
Nodosaria conferta.
Nodosaria ovalis.
Nodosaria citriformis.
Nodosaria Kirkbyi, Richter.
Dentalina perniana, Jones.

1869. JONES, PARKER, and KIRKBY, Ann. and Mag.
Trochammina incerta (d'Orb.).
Trochammina pusilla (Geinitz).
Trochammina gordialis, Jones and Parker.

Trochammina milioloides.

§ 6. GEOLOGICAL AND GEOGRAPHICAL.

The geological relations of the limestones and other foraminifera-bearing rocks of the Carboniferous period form a subject altogether too wide and multiform to admit of treatment in any space that could be here devoted to it; but, inasmuch as the value of the information furnished under the head "Distribution" depends upon the care which has been exercised to obtain accurate knowledge of the locality and geological source of every batch of material examined, it seems essential that the palæontological portion of the memoir should be preceded by particulars sufficiently detailed to answer the requirements of the geologist and to ensure the ready identification of each habitat. I am especially indebted to my friend Mr. Geo. A. Lebour, F.G.S., for help in this matter. His wide and
intimate knowledge of all that concerns the Carboniferous rocks gives a high value to the assistance of which his ever-ready kindness has encouraged me to avail myself largely.

The following is a summary, arranged in approximately geographical order, of the localities which have yielded Carboniferous and Permian Foraminifera—the Carboniferous taken first—together with particulars as to stratigraphical position, and such other collateral information as I have been able to gather respecting them. A very large proportion of the material that I have had the opportunity of examining for fossil microzoa has been collected for me by scientific friends at home and abroad, and I have chosen this place to acknowledge the aid I have received and to thank the donors individually. The category of localities is a long one, but it only includes those which have yielded positive results; so that I must further express my thanks collectively to the many geologists who with equal care and pains have provided me with material which has, not happened to contain the particular organisms of which I was in search. As probably three packages out of every four that have come into my hands have been barren of Foraminifera, the examination of unproductive material has formed no small part of my labour.

The numbers in the margin correspond with those in the heading of the Distribution Tables, and are intended to facilitate reference.

Carboniferous.

ENGLAND AND WALES.—Table I.

North of England.

In Northumberland the enormous thickness of beds lying between the Millstone Grit and the Calciferous Sandstone groups present no true division into Upper and Lower series. The thickness of the entire series (which Mr. Lebour proposes to name “Bernician,” after the ancient name of Northumberland) is extremely variable, probably not less than 8000 feet in the middle of the county, and there includes a great number of limestone beds, which become fewer both to the north and to the south. From Alston southwards the Carboniferous Limestone rocks may be conveniently split into two divisions.

It will be seen that most of these English foraminifera-bearing beds belong to the Yoredale Rocks of Phillips. This being so, it seems necessary to call attention to the limits of that group, inasmuch as they do not appear to have been much studied hitherto outside of Yorkshire. Prof. Phillips included in his Yoredale Series the set of beds which lies between the Millstone Grit and the Great Whin Sill, or from the base of the Millstone Grit to the Tyne-bottom Limestone inclusive, along the Pennine escarpment and at Alston.
In Yorkshire, and indeed as far as Alston, the division is easily understood, but further north it can no longer be recognised, for two reasons—firstly, the Whin Sill ceases to be interbedded at the same horizon, and intrudes into higher levels; and secondly, the Tyne-bottom Limestone ceases to be specially recognisable owing to the intercalation of new beds of limestone and the thinning-out of old ones above and below it. The base line of the Yoredale Series, therefore, whether it be taken as the Great Whin Sill or the Tyne-bottom Limestone, fails altogether in the northernmost portion of its area. These remarks are needed because in geological maps, otherwise reliable, everything above the Whin Sill is coloured "Yoredale" as far as the Millstone Grit, and all below is coloured "Carboniferous Limestone" proper. The Little Limestone, Great Limestone, and Four-fathom Limestone, are all undoubted representatives of portions of the Yorkshire Yoredales, but in following the maps one may find an easily identified horizon, such as that marked by one of the beds containing Saccammina, sometimes coloured as Yoredale, sometimes as Carboniferous Limestone proper, and the Great Limestone is in much the same case.

Northumberland.

Foraminifera are found

In the "Ridsdale Ironstone Shale" (30 feet), a bed about two thirds down in the "Bernician" Limestone series [Scar] at

1. The Ridsdale Ironstone workings, in the shale heaps and old quarries. Material collected by Mr. Lebour.

In the "Bottom Limestone" (17 feet) of the Ridsdale Ironstone district, which lies above the shale, from which it is separated only by a bed of sandstone 11 feet thick [Scar], at

2. Skellygate, Ridsdale, from old pits. Material collected by Mr. Lebour, and specimens in the Rev. W. Howchin's collection.

In partings of calcareous shale in a thick bed of limestone, about 800 feet above the last [Scar], at

3. Colster Cleugh—in the bed and banks of the burn—about two miles east of Elsdon. Material collected by Mr. Lebour.
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

In a bed of limestone about 1000 feet below the "Great Limestone" [Scar] at

In the "Four-fathom Limestone" [Yoredale] at

5. Harlaw Hill, two miles north-east of Alnwick. Material collected by Mr. Topley.
6. Brinkburn, Coquetdale; from Mr. Topley.
7. Forest Burn, Coquetdale; from Mr. Topley.
9. Hallington. Material from Mr. Lebour.
10. Newbrough, near Fourstones. Material first collected by Mr. Lebour—locality, as in many other cases, subsequently visited by myself.
11. Haydon Bridge district—various quarries on the north side of the South Tyne surveyed by Mr. Lebour.

In the roof of the "Top Coal" of Newton-on-the-Moor—a very variable bed of shale above the "Four-fathom" and below the "Great" Limestone [Yoredale] at

12. Newton-on-the-Moor. Collected by Mr. Topley.

In the "Great Limestone" [Yoredale] at

13. Newton-on-the-Moor. Also collected by Mr. Topley.
14. Langley, above Haydon Bridge. One or two microscopic sections of limestone in Mr. D. O. Drewett's collection.

In the shale lying immediately above the Great Limestone [Yoredale] at

16. Fourstones Quarry, South Tyne. The Rev. W. Howchin has worked out the microzoo of this locality, and has not only furnished me with material for examination, but allowed me the free use of the specimens in his collection.
GEOLOGICAL LOCALITIES.

In the “Little Limestone” [Yoredale] at

18. Belsay. Two beds of limestone run through Belsay Park, the Foraminifera are from the lower of them. These two limestones, as well as a lower one, make no appearance south of the Tyne. List of species compiled from Rev. W. Howchin’s collection.

In the “Fell-top Limestone” [Yoredale] at

19. Top Limestone, Coquet. Material collected by Mr. Topley.

Durham.

In the Four-fathom Limestone [Yoredale] at

20. Middlehope Burn, north of Westgate, Weardale. **Saccammina** observed by Mr. R. Howse, of Newcastle.

In the Great Limestone [Yoredale] at

21. Bollyhope, between two and three miles from Stanhope on the road to Middleton-in-Teesdale. Specimen also from Mr. Howse.

Cumberland.

In the Four-fathom Limestone [Yoredale] at

22. Alston, and in various quarries southwards. Material collected by Dr. Savage and others—also specimens in Mr. Charles Moore’s collection.

In limestone, exact horizon unknown, probably Yoredale, at

23. Wyebourne. Foraminifera observed on the surface of a piece of weathered dark grey limestone.

Westmoreland.

In the Melmerby Scar Limestone [Scar] at

159. Swindale Beck, near Brough. A band of earthy shale in the upper
part of the bed, collected by Mr. Lebour. This material came too late for the results of its examination to be included in the Table. It contained the following forms:—Trochammina incerta, Valvulina palaeotroclus, V. decurrens, and Endothyra Bowmani.

Shale in the upper part of the "Scar" Limestone about 400 feet below the Hardra Limestone.

25. Gaythorn, near Crosby Ravensworth.

The Hardra Limestone is generally accepted as the base of Phillip's Yoredale series, but it is not known how far it may be identical with the "Tyne-bottom Limestone." Specimens from Prof. Harkness, F.R.S.

Yorkshire.

In the "Yoredales" proper, without more definite horizons, at

26. Hurst, near the head of Swaledale. Material obtained by Mr. Edward Wood, F.G.S., of Richmond.

27. Downholme, in Swaledale; marly plates between limestone beds—also from Mr. Wood.

29. Keld Head Mines, Wensleydale. The specimens from these two localities kindly lent by Mr. Charles Moore, F.G.S.

30. Gaping Gill, near Clapham Cave. Specimen of Limestone communicated by Mr. Jas. Thomson, F.G.S.

Midland Counties and North Wales.

I have unfortunately had but little opportunity of ascertaining the extent of the Foraminifera-fauna of the great range of limestone rocks of the central parts of England
or of North Wales, and the material which has presented itself has not been accompanied with detailed geological or geographical information. Still an imperfect record, correct as far as it goes, is better than none.

Derbyshire.

In the Limestone Rock or Toadstone Series [Scar] at

31. Bakewell. One or two beautiful microscopical sections of limestone in the collection of Mr. H. C. Sorby, F.R.S.

Staffordshire.

32. North Staffordshire. Microscopical sections in Mr. Sorby’s collection, without particulars as to exact locality.

Shropshire.

34. Steeraway. Mr. C. Moore’s collection.

Carnarvonshire.

35. Bangor. Two fine microscopical sections of Carboniferous Limestone in Mr. Sorby’s collection.

36. Great Ormes Head. An outlier of the Carboniferous Limestone. Specimens in Dr. Harvey B. Holl’s collection.

Bristol District.

The Avon section of the Carboniferous Limestone is divided into three principal groups, thus—

I. Upper shales or grits.
 \[
 \begin{align*}
 \text{a. Upper Mountain Limestone (coralline).} \\
 \text{b. Middle Mountain Limestone (not very fossiliferous).} \\
 \text{c. Lower Mountain Limestone (rich in Fishes, Brachiopoda, &c.).}
 \end{align*}
 \]

II. Lower limestone shales (very fossiliferous).
These probably find their equivalents in the Yoredale rocks, but the beds below the true lower shales form a sort of intermediate group corresponding with those of North Devon. With one exception the beds which have furnished Foraminifera all occur in the Upper Mountain Limestone (II, 2), the exception being a bed in the lowest part of the Middle Mountain Limestone (II, 3) marked in the table "Great Quarry, near Longispinosa bed." To my friend Mr. W. W. Stoddart, F.G.S., of Bristol, whose name is identified with the geology of the Clifton Rocks, I am indebted for ample supplies of material from both sides of the River Avon, as well as for accurate geological information as to the localities whence they were obtained.

Gloucestershire.

In the lowest part of the Middle Mountain Limestone.

37. **Great Quarry,** near the "**Longispinosa bed,**" Bristol.

In the Upper Mountain Limestone.

38. **Bridge Valley Road,** near Clifton Down.

Somersetshire.

In the Upper Mountain Limestone.

39. **Leigh Woods,** Foraminifera-bed.
40. **Leigh Woods,** between Foraminifera-beds.
41. **Opposite Point, Leigh Woods,** Foraminifera-bed and parting.
42. **No. 2 Foraminifera-bed.**

These four localities are all in the Clifton district.

43. **Backwell,** a single mounting of Foraminifera, probably of similar age to the foregoing in Mr. C. Moore’s collection.

160. **Bath.** In Mr. C. Moore’s collection are one or two specimens of a very granular variety of *Trochammina incerta* collected from the sediment of the Bath mineral waters. These are presumably Carboniferous, but it has not been thought worth while to devote a column in the table to them.

SCOTLAND.——Table II.

The comparative completeness of the Distribution Tables referring to the Scotch Carboniferous system is mainly due to the friendly aid of the officers of the Geological
Survey of Scotland, and especially of their palæontologist, Mr. R. Etheridge, junr., F.G.S. Through his kindness and interest in the subject I have had the opportunity of working over a very extensive series of washed shales collected from the Scotch Carboniferous beds by Messrs. J. Bennie and A. Macconochie, the collectors to the Survey, as well as of examining the mounted specimens belonging to the Museum of that body. A report upon the Foraminifera of the Lanarkshire Coal-field was drawn up two or three years ago for the use of the Survey, the substance of which was embodied in one of their memoirs,¹ and as far as Scotland is concerned, the present work may be regarded as an expansion of the results then furnished. I am also Mr. Etheridge’s debtor for the accurate geological and geographical information upon which the tables are based, and without which they would have lacked the essential elements of order and geological reliability.

I am not less beholden to my friends Mr. John Young, F.G.S., and Mr. David Robertson, F.G.S., of Glasgow. The first Carboniferous Foraminifera from the Scotch beds that came to my hands were those of the beautiful collection formed by Mr. Young. They were lent to me without reservation long before I had any specimens of my own from localities north of the Border, and I have had the cordial co-operation both of Mr. Young and Mr. Robertson throughout my work.

Where no note is appended to the localities in the following list I have had my supplies of material from the stores of the Geological Survey of Scotland; in other cases the names of the contributors are added in parentheses.

Fife.

Lower Limestone Group.

Shale below No. 1 Limestone, Midlothian Series (= Main or Hurlet Limestone).

152. Abden, on shore east of Kinghorn. White and blue shales.

Shale above No. 1 Limestone, Midlothian Series.

153. Invertiel Quarry, north of Linktown, Kirkcaldy.

Shale above Linn Limestone (probably equivalent to No. 1 Limestone, Midlothian Series).

154. Cowdens Quarry, north-west of Dunfermline.

Shale below No. 2 Limestone.

44. Seafield, on shore west of Seafield Tower, south-west of Kirkaldy.

Shale above Seafield Tower Sandstone.

155. Seafield, on shore east of Seafield Tower.

Shale above No. 1 or No. 2 Limestone.

45. Glenniston Quarry, four miles north-west of Kirkaldy.
46. Sunnybank Quarry, three miles south-east of Dunfermline.
47. Charleston Quarry, four miles south-west of Dunfermline.

Shale above No. 2 Limestone, Midlothian Series.

158. Roscobie Quarry, north of Dunfermline.

Stirlingshire.

Lower Limestone Group.

Shale below Main Limestone.

48. Glenwhapple Burn, Craigenglen, about one and a half mile south of Lennoxtown.
49. Craigenglen, Campsie (Messrs. Robertson and Young).
51. Millburn, Campsie (Messrs. Robertson and Young).

Shale connected with No. 2 Limestone.

50. Corrieburn, left bank near Cairnbrae, about two and a quarter miles from Kilsyth.

Linlithgowshire.

Lower Limestone Group.

Shale above No. 1 Limestone (= Main, or Hurlet Limestone).

52. Whitebaulks Old Quarry, about two miles south of Linlithgow.

Shale below Bathgate Limestone (? = No. 2 Limestone of Midlothian field).

53. Galabraes Quarry, near Bathgate.
Bathgate Limestone (decomposed).

54. Sunnyside Quarry, near Knock, about three miles north-east of Bathgate.

Shale above No. 2 Limestone, Midlothian Series.

55. Murrayfield Pit, Blackburn, near Bathgate.

Upper Limestone Group.

Shale above Dykeneuk Limestone (= Gair Limestone).

56. Dykeneuk Old Quarry, Kinneil, two miles south-west of Bo'ness.

Shale above one of the Upper Limestones.

57. Avon Water, 100 yards below Kinneil Mill, near Linlithgow.

Edinburghshire.

Lower Limestone Group.

Addiewell Limestone (= No. 1 or Hurlet Limestone).

58. No. 16 Mine, Addiewell, near West Calder; decomposed limestone.

No. 1 Limestone, Midlothian Series.

59. Crichton Quarry, near Pathhead.

60. Middleton Quarry, near Borthwick.

Shales between beds of No. 1 Limestone.

61. Middleton Quarry, near Borthwick.

Addiewell or Hurlet Limestone.

Shale above No. 1 Limestone.

63. Hillhead Quarry, Cockmuir Bridge, near Penicuick.

No. 2 Limestone.

64. Fullarton Quarry, near Penicuick.
65. Fullarton Quarry, lower layer of shale in situ between beds of limestone.
66. Fullarton Quarry, upper layer of the same.
67. Magazine Limeworks, near Pathhead.
68. Brunston Colliery, near Penicuick.
69. Mount Lothian Quarry, near Penicuick.
70. Mount Lothian Quarry, buff shale between beds of “No. 2 Limestone.”
71. Currielee Quarry, near Gorebridge.

Shale above No. 2 Limestone.

72. Brunston Colliery, near Penicuick.
73. Cousland Quarry, near Dalkeith.
74. Blinkbonny Quarry, near Gorebridge.

Upper Limestone Group.

Shale above Gair Limestone.

75. Whitehouse Old Quarry, half a mile north-east of Levenseat, near Wilsontown.

Levenseat Limestone—highest of the Carboniferous Limestone series; by some placed in the Millstone Grit.

76. Levenseat Limestone pit.

Shale between beds of Levenseat Limestone.

77. Levenseat Quarry.

Haddingtonshire.

Lower Limestone Group.

No. 2 Limestone.

78. Kidlaw Quarry, near Gifford.
79. Dunbar. (Also Mr. F. M. Balfour’s specimens.)

Shale above No. 2 Limestone, Midlothian Series.

80. Salton Limeworks, new quarry on east side of road near East Salton.
81. Quarry north of East Salton Village.
82. Burlage Quarry, two miles south-east of Dunbar.
83. East Barns Quarry, two miles south-east of Dunbar.
156. Spilmersford Quarry, near Salton Hall.
157. Lampland Quarry, near Pathhead.

Upper Limestone Group.

Shale above No. 5 Limestone (? = Gair Limestone).

84. Shore of Firth of Forth, opposite Prestongrange, near Prestonpans.

Renfrewshire.

Upper Limestone Group.

Gillfoot or Belstonburn Limestone, next below Gair Limestone.

85. Orchard near Pollackshaws (list supplied by Messrs. Young and Robertson).

Lanarkshire.

Lower Limestone Group.

Main Limestone.

86. Fulwood Old Quarry, three miles south-east of Carluke.
87. Braidwood, near Carluke. (List compiled from Messrs. Young and Robertson’s and Rev. W. Howchin’s collections.)

Shales above Main Limestone.

88. Fulwood Old Quarry, three miles south-east of Carluke.
89. Fiddlers’ Burn, near Carluke, on the left bank of the Burn, opposite Headsmuir.
90. Quarry on the South Shiells Farm, two and a half miles south-east of East Kilbride. (Including also Messrs. Young and Robertson’s gatherings.)
91. Ponfeigh Burn, a little below turnpike road, about four miles north-north-east of Douglas.
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

92. Poniel Water, at Brockley, near Lesmahagow—shale exposed on the left bank. (Messrs. Young and Robertson’s Brockley gatherings are included in this column of the table.)

Shale above the Hosie Limestone.

93. Hillhead Farm, near Carluke—shale heaps in an old quarry.
94. Head of Mouse Water, near Wilsontown.

Coralline band over No. 1 Limestone, Calderwood Series.

95. Capelrig and Brankumhall, shale heaps in old quarries on these farms, about one mile and a quarter north-east of East Kilbride. (Including also Messrs. Young and Robertson’s specimens.)

Shale above the last-named coralline band.

96a, 96b. Capelrig and Brankumhall, near East Kilbride, two positions searched.

Shales above No. 1 Limestone, Calderwood Series.

97. Calderside Grounds, old quarry on the right bank of Calder Water, about one mile and a half east of East Kilbride.
98. Auchentibber, Broomhouse, and Newfield Farms, about two miles east by north of East Kilbride; shale heaps in quarries.
99. Boghead Farm, about four miles south-east of East Kilbride; shale heaps in old quarry. (Including also Messrs. Young and Robertson’s specimens.)

Shale over No. 3 Limestone, Calderwood Series.

100. Limekiln House, near East Kilbride; old quarry, east of the house.

Shale over Birkfield Calany Limestone.

101. Hairmyres, near East Kilbride, weathered shale in situ between Railway and Curling Pond. (Messrs. Young and Robertson’s gatherings also included.)

Shales over Kinshaw Limestone Series.

102. Mouse Water, opposite Lambeatch, near Wilsontown.
GEOLOGICAL LOCALITIES.

Second Calmy Limestone.

103. **Braidwood**, near Carluke. (List compiled from Messrs. Young and Robertson's and Rev. W. Howchin's collections.)

Upper Limestone Group.

Cowglen, or Index Limestone = Rough Limestone of Carluke.

104. **Climpy Quarry**, one mile and a half north-west of Wilsontown.

Shales above Seven-foot Limestone.

105. **Auchenbeg Old Quarry**, about three miles south of Lesmahagow.

Shales above Gair Limestone.

106. **Westerhouse Old Quarry**, about two miles and a quarter north-east of Carluke. (List includes also Messrs. Robertson and Young's gatherings.)

107. **Gair Old Quarries**, about two miles north-east of Carluke. (List includes also the species in Messrs. Robertson and Young's and the Rev. W. Howchin's collections.)

108. **Limekiln Burn Quarry**, about three miles south-west of Hamilton.

110. **Barmulloch Old Quarry**, north-east of Glasgow. (Also Messrs. Robertson and Young's collections.)

111. **Robroyston House Old Quarry**, north-east of Glasgow (shale over Gair or Robroyston Limestone).

112. **Craigburn**, near Lesmahagow, a few yards above turnpike road.

113. **Kennox Water**, about half a mile above Kennox House, south of Douglas.

114. **County Boundary between Lanarkshire and Edinburghshire**, old quarry one mile and a half north-west of Wilsontown.

Shale over Belstonburn Limestone.

115. **Bed of Burn behind Gillfoot House**, two miles south-south-west of Carluke. (Including also Messrs. Young and Robertson's specimens.)

116. **Belstonburn**, exact horizon wanting. (Specimens in the Rev. W. Howchin's collection.)
Shale above one of the Upper Limestones of doubtful position.

117. Meikle Earnock, on the right bank of the burn opposite Whitecraigs, about four miles east by south of East Kilbride.

Ayrshire.

Lower Limestone Group.

Probably shale above Main Limestone.

118. Trearne and Dockra, near Beith.

Upper Limestone Group.

Exact position not ascertained.

119. Garple Burn, near Muirkirk. (The lists from these two localities drawn up by Messrs. Robertson and Young.)

Peeblesshire.

Shale above No. 1 Limestone.

120. Whitfield Old Quarry, near Carlops.

Shale between beds of No. 2 Limestone.

121. Bents’ Quarry, near Carlops.

Shale above No. 2 Limestone.

122. Carlops Quarry, Carlops.

Dumfriesshire.

LOWER CARBONIFEROUS OR CALCIFEROUS SANDSTONE SERIES.

Cement Stone Group.

123. Donkins’ Quarry, at Kirthbridge Station, two miles and a half east of Ecclefechan—a greenish-grey limestone, weathering red.
GEOLOGICAL LOCALITIES.

124. Bonshawburnhead Quarry, east of Quarry Park, two miles and
a half south-east of Ecclefechan.

125. Cauldronlee Quarry, five miles north-east of Ecclefechan—a red and
white shale above the greenish-grey limestone.

IRELAND.—Table III.

The divisions of the Carboniferous Limestone series in Ireland are as follows, in
descending order:

I. Yoredale Rocks and Millstone Grit (usually termed in Ireland "Coal-measures
and Millstone Grit").
II. Upper Limestone. No true boundary exists between these two
III. Middle Limestone or "Calp." } divisions.
IV. Lower Limestone—about 200 feet.
V. Lower Limestone shale.

Hitherto Foraminifera have only been found at two localities in condition sufficiently
well preserved to admit of ready identification, and their discovery is due to my friend Mr.
Joseph Wright, F.G.S., of Belfast, to whose kindness I am indebted for my specimens.

126. Castle Espie, near Comber, Co. Down, on the north-west shore of
Strangford Lough. The material is a soft calcareous shale of the Lower
Limestone series, from a detached patch of Carboniferous lying on the
upturned edges of Silurian rocks.

127. Bundoran, Co. Donegall, three miles south-west of Ballyshannon. A
Lower Limestone shale with bands of impure limestone. Material obtained
from beds exposed along the shore.

161. Galway, a microscopical section of Carboniferous Limestone from the
Galway rocks, in Prof. Wm. King’s collection, contains a few small and
somewhat indefinite Endothyrae, but not sufficiently representative to be
catalogued.
BELGIUM.—Table IV.

The Carboniferous Limestone of Belgium is divided by M. Dupont into six sets of beds, which have been named from the localities in which they are respectively best developed. They are as follows, in ascending series, beginning at the lowest:

I. Calcaire des Ecaussines—thickness 150 metres, composed of limestones with intercalated shales at the base, with phthanite at the upper part; the limestones with Spirifer Vernalilli, Sp. mosquensis, Orthis crenistria, and Cyathophyllum plicatum.

II. Calcaire de Dinant—thickness 60 metres, a black compact limestone with phthanite having conchoidal fracture. Fossils, Productus Herberti and Pecten intermedius.

III. Calcaire d’Anseremme—thickness 100 metres, a grey limestone with blue veins, more or less siliceous and with phthanite in the lower part. Fossils, Productus Flemingi and Spirifer mosquensis in the upper part, and Orthis resupinata, which is very characteristic of this division.

IV. Calcaire de Vaulsor—thickness 100 metres, a grey limestone, often magnesian; the beds full of radiated spathic nodules. Fossils, Spirifer striatus and Sp. cuspilatus; in the lower part Conocardium aleforme, and in the upper part Rhynchonella pleurodon and Ampelanus coralloides are especially met with.

V. Calcaire de Namur—thickness 100 metres, is the black dolomitic limestone with large Euomphali. It is black and compact at the base, dolomitic in the upper portion; usually fissured in every direction. Fossils, Euomphalus equalis and E. acutus.

VI. Calcaire de Visé—thickness 250 metres, confusedly stratified, variable in structure and colour; containing a brecciated limestone and rocks of which the structure has become sandy through the decomposition of the dolomite. Fossils, in the lower part, Productus cora and P. undatus; above, Productus giganteus and Chonetes conoides.

We are at present concerned with the two last named only, the Calcaire de Namur and the Calcaire de Visé, for in these alone have Foraminifera as yet been found. I am indebted to my friend M. Ernest Vanden Broeck, of Brussels, for his assiduous help in procuring for me material for examination from the various limestone beds of Belgium. Out of a very large series forwarded to me at various times only four in all have yielded

any traces of fossil Rhizopoda, but the species obtained represent a fauna of very great interest.

The following are the localities:

128. Carrière du Fond d'Arquet, near Namur, Belgium. A package of decomposed grey limestone from the Calcaire de Namur.

129. Carrière du Fond d'Arquet. Material of similar character from the same locality, marked "2me Couche inférieure."

130. Flemalle, near Liège. Grey, friable, calcareous material from the Calcaire de Visé.

131. Calcaire de Visé. Material from the dressing of the fossils of the Ryckholt collection in the Brussels Museum. I owe this to the kindness of Prof. de Koninck.

It remains only to say that the Calcaire de Namur is chiefly remarkable, from our point of view, as the habitat of the earliest Nummulite and also of the only specimens hitherto found pertaining to any of the Rotaline genera. It is much to be regretted that the subcrystalline nature of the calcareous rock at every position in which it has been examined microscopically has so obscured the characters of the minute fossils as to render the identification of many of them a matter of difficulty and doubt, and the list of species determinable has been much shortened thereby. The Calcaire de Visé is notable as the only position out of Great Britain in which Saccammina Carteri has been observed.

RUSSIA.—Table V.

The general classification of the Carboniferous and Permian rocks of Russia seems to be as follows:

Permian.
\[
\begin{align*}
\text{Permin limestone with gypsum and chalky limestone,} \\
\text{alternating with Kupfer-Sandstein, of the Province} \\
\text{of Perm.} \\
\text{Fresh-water limestone, with gypsum.} \\
Pfeffer-Sandstein.
\end{align*}
\]

Coal-measures and Culm.
Donetz Coal-field?

Carboniferous Limestone, proper.
\[
\begin{align*}
\text{Chalky limestone with } Fusulina cylindrica. \\
\text{White Dolomitic limestone.} \\
\text{Bituminous limestone.}
\end{align*}
\]
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

Tændian (Calciferous Sandstone) ?

Upper Devonian.

According to Ludwig the Fusulina-beds in the Donetz are on the horizon of the true Coal-measures (passing upwards into the Permian), but in other Russian districts, so far as can be made out, they are confined to the true Carboniferous Limestone, though probably to its upper part.

I am indebted to the kindness of General G. von Helmersen, of St. Petersburg, for specimens of Fusulina-limestones from several localities in central Russia. Some of these specimens, notably those from the first three localities in the following list, contain other species of Foraminifera as well as *Fusulina*. To Dr. Herrman Abich, of Tiflis, Georgia, I am under the like obligation in respect to the Fusulina-rocks of the Caucasus, which have also yielded evidence of the existence of some of the minuter types. The remaining localities on the list are given on the authority of Prof. Ehrenberg and M. Edw. d’Eichwald.

The whole of these may be regarded as pertaining to the Carboniferous Limestone proper.

132. Miatschkovo, near Moscow.
 a. A grey, porous, crumbling limestone, with *Fusulina cylindrica*, Encrinites, and other fossils.
 b. A white, compact limstone, with *Fusulina cylindrica* and *Chactetes*.

133. Ostaschkovo, on the Volga, in the province of Samara. A light-coloured friable limestone, with *Fusulina*.

134. Zærew Kurgan, a mountain on the left bank of the Volga, north of the town of Samara. A light-brown limestone, almost entirely composed of small and perfect specimens of *Fusulina cylindrica*.

135. Witegra, on Lake Onega, Government of Olonetz. White, friable Bellerophon-limestone of the Mountain Limestone. See Ehrenberg’s ‘Mikrogeologie.’

136. Toula, Hornstone of the Mountain Limestone, with *Spirifer mosquensis* (Ehrenberg).

137. Sloboda, a village in the Government of Toula. Yellow Carboniferous clay. See d’Eichwald’s “Lethaea Rossica.”

1 Ludwig (Rudolf), ‘Die Steinkohlenformation im Lande der Don’sche Kosaken,’ Moscow, 1874.
138. Caucasus. Various specimens of compact black limestone, taking high polish, and containing Fusulina. A knowledge of the contents of these can only be obtained by means of thin sections, the list is therefore necessarily incomplete. I am not quite certain that I am right in classing them as Russian. Some of the specimens contain the Fusulina sphaerica of Abich, which suggests the possibility of these at least being from the Armenian or northern Persian portion of the mountain range.

NORTH AMERICA.—Table VI.

United States and Canada.

Beyond the genus Fusulina but little is yet known concerning the Carboniferous Foraminifera of North America, and the instalment now offered towards the history of the minuter forms is not of sufficient importance to need any lengthy geological introduction. The American Fusulina-rocks pertain chiefly to the "Upper Coal-measures," but in the South-western States they extend into the strata which are regarded as representative of the Permian system; indeed, the largest variety of the genus hitherto described (Fusulina elongata, Shumard) has its habitat in the Permian Limestones of Texas and New Mexico.

Only two samples of material from the Fusulina-beds, in condition favorable for examination with respect to the smaller Foraminifera, have come under my notice, and both of them were from Iowa. They were forwarded to me by Dr. C. A. White, whose effective labours in connection with the geology of that State are well known.

I am indebted to Dr. F. B. Meek and Dr. C. A. White, of Washington, for interesting specimens of a microzoic limestone of much earlier age from the "Sub-carboniferous" rocks of Indiana, consisting almost entirely of the shells of a single species of Foraminifer, Endothyra Bowmanii, Phillips (Rotalia Baileyi, Hall).

With respect to the single Canadian locality, I can add nothing to the published statement in my friend Dr. J. W. Dawson's "Acadian Geology."

Whilst the relation of the American Carboniferous rocks to those on the eastern side of the Atlantic is still a matter of debate amongst our ablest geologists, I may well be excused any attempt to correlate the few horizons marked by the occurrence of the smaller fossil Rhizopoda with particular portions of the Carboniferous series of this country or of continental Europe.

139. Southern Iowa—no precise locality. Labelled "Residue from clayey partings of layers of Fusulina-limestone. Upper Coal-measures."
140. Southern Iowa. Weathered and disintegrated Fusulina-limestone from near the point of junction of the Platte River with the Missouri. Upper Coal-measures.

141. Southern Indiana. A grey, friable limestone, composed almost entirely of minute fossils. Labelled “Warsaw Limestone of Hall = St. Louis Limestone of Owen. Subcarboniferous.” The particular deposit is known as the Spurgeon Hill bed, and it appears to run through several counties, the locality from which it takes its name being in Washington County.

142. Windsor, Nova Scotia. A white, friable Carboniferous limestone, with Nodosinella priscilla (Dawson).

Permian.—Table VII.

Foraminifera, though pertaining to a limited number of types, abound in the Permian or Zechstein formation of the north-east of England and central Germany, and their occurrence has been also noted in deposits of similar geological age over a small district in the north of Ireland. The constituent beds of the English and German Permian areas have been variously correlated; but without entering into debated points, the classification adopted by Dr. H. B. Geinitz may be accepted as sufficient for our present purpose. It is as follows ('Dyas,' p. vii):

Zechsteinformation or Permian (Dyas).

<table>
<thead>
<tr>
<th>Germany</th>
<th>England</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Plattendolomit (Dolomitischen Kalk-schiefer, Stinkkalk, Stinkstein).</td>
<td>Upper Yellow Limestone, Conglobated Limestone.</td>
</tr>
<tr>
<td>b. Mittler Zechstein.</td>
<td>Middle Magnesian Limestone.</td>
</tr>
<tr>
<td>II. Rauchwacke or Dolomite (Rauhkalk, Höhlenkalk, Riff-Zechstein, &c.).</td>
<td>Concretionary and Shell-limestone or Crystalline and Fossiliferous Limestone.</td>
</tr>
</tbody>
</table>

1 According to my friend Dr. C. A. White the bed appears in three adjoining counties, viz. Munroe Co., Lawrence Co., and Washington Co. Its occurrence in Lawrence Co. is noticed in the ‘Fifth Annual Report of the Geol. Survey of Indiana’ (for 1873), p. 285, E. T. Cox, State Geologist, from which I gather that the name is also written Spurgeon Hill.
e. Unterer Zechstein. Lower Magnesian Limestone.

III. Zechstein, next under the foregoing and overlying the bituminous Mergelschiefer. Compact limestone.

IV. Kupferschiefer. Marl-slate.

Prof. Wm. King places the magnesian limestone of Tullyconnel, Co. Tyrone, Ireland, in the uppermost portion of the series.

Of these divisions the beds yielding Foraminifera are confined in England to Nos. I, II, and III, in Ireland to No. I, and in Germany to II, III, and IV.

My work in respect to the Permian species of Foraminifera has lain rather in the examination and comparison of specimens from localities already well known, the embodiment of information contained in many scattered papers, and the revision of the nomenclature of the group, than in the investigation of material from unsearched ground. To Dr. R. Richter, of Saalfeld, I am indebted for much assistance in this portion of the subject. Not only has he supplied me liberally with material from the Thuringian beds and with specimens from his own collection, but has further facilitated the determination of doubtful species by furnishing accurate drawings of well-marked examples, some of which are now reproduced as illustrations. Dr. Richter has also communicated the details from which the table of distribution, so far as it concerns the Thuringian species, has been drawn up.

My thanks are also due to Mr. J. W. Kirkby, whose labours in connection with the fossil microzoa of the English Permian beds are widely known and as widely valued, for the loan of specimens and for much exact information as to localities.

In the following list, both English and German localities have been numbered in groups rather than individually, the species being few in comparison to the number of stations at which they have been observed.

ENGLAND.

Lower Magnesian Limestone.

143. Durham—including

Hartley’s Quarry, Millfield, Sunderland.
Pallion, a mile and a half west of Sunderland.
Westoe, near South Shields.
Offerton, three miles west of Sunderland.
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

Rough Dene, near Houghton-le-Spring.
Eldon, three miles south-east of Bishop Auckland.
Langton, two and a half miles east of Staindrop.
Morton Tynemouth, four miles east of Staindrop.
Summerhouse, six miles north-west of Darlington.
Thrislington Gap, Ferry Hill.
Running Waters, four miles east of Durham.
Moorsley, south of Houghton-le-Spring.
Walworth, four miles north-west of Darlington.
Limekiln Banks, two and a half miles north of Piercebridge.

144. Yorkshire—including
Nosterfield, near Masham.
Gybdykes, near Masham.
Chapel Houses, south of the Tees, near Gainford.
Thornton Watlass, south-west of Bedale.
Linderick, near Ripon.
Hampole Inn, north-west of Doncaster.

Middle Magnesian Limestone.

145. Durham—including
Tunstall Hill, one mile and a half south-west of Sunderland.
Humbleton Hill, one mile west of Sunderland.
Claxheugh, two miles west of Sunderland.

Upper Magnesian Limestone.

146. Durham—
Byers Quarry, on the coast between Sunderland and South Shields.

IRELAND.

Upper Magnesian Limestone.

147. Tyrone—
Tullyconnel, near Artrea.
GEOLOGICAL LOCALITIES.—BIBLIOGRAPHY.

GERMANY.

Unterer Zechstein.

Kupferschiefer (Bituminous Marl-slate).

148. Thuringia—at Königsee, Saalfeld, Pösneck, and Gera, and especially at Köpsen, Trebnitz, and Milbitz.

Zechstein proper.

149. Thuringia—at Sonneberg am Schlossberge, at Königsee and Saalfeld; in the Rothen Berge at Pösneck, in the neighbourhood of Neustadt on the Orla, at Gera in Zaufensgraben, and at Zschippern.

150. Selters, in the Wetterau; list compiled from Dr. E. E. Schmid’s paper.

Mittler Zechstein.

Rauchwache or Dolomite.

151. Thuringia—at Saalfeld, at Kamsdorf on the Rothen Berge, at Pösneck on the Altenburg, also between Königsee and Blankenburg.

§ 7. BIBLIOGRAPHY.

The following are the titles in full, and arranged in chronological order, of the various books and memoirs referred to in subsequent pages. The bibliography of the genus Fusulina has not been included, but with this exception the list has been made as complete a synopsis as possible of the literature connected with Carboniferous and Permian Foraminifera. In a few instances references are made in the text to papers which only affect the subject incidentally and have no important bearing upon it; and, as in these cases sufficiently detailed information is given where the quotation occurs, it has not been thought desirable to extend an already lengthy category by their insertion.

1 Numbers 152 to 161 have been inserted since the tables were drawn up. They will be found as follows:—152, 153, 154, on p. 35; 155 on p. 36; 156, 157, on p. 39; 158 on p. 36; 159 on p. 31; 160 on p. 34; 161 on p. 43.
1829—1837. Fischer de Waldheim, G., "Oryctographie du Gouvernement de Moscou."

1843. Ehrenberg, Dr. Chr. G., Note of a Communication on Polythalamia from the Mountain Limestone Hornstone of Tula, in Russia, p. 79:

1848. Geinitz, Dr. H. B., "Die Versteinerungen des deutschen Zechsteinengebirge und Rothliegendes."

1850. King, William, "Monograph of the Permian Fossils of England" (Foraminifera by Prof. T. Rupert Jones).

1854. Ehrenberg, Dr. Chr. G., 'Mikrogeologie; das Wirken des unsichtbaren kleinen Lebens auf der Erde.'

1854. M'Coy, 'Contributions to British Palæontology.'

BIBLIOGRAPHY.

 Berlin.

1856. Hall, Prof. James, "Description of New Species of Fossils from the Carboniferous Limestones of Indiana and Illinois" ('Trans. Albany Institute,' vol. iv).
 Albany.

1858. Williamson, Prof. W. C., 'On the Recent Foraminifera of Great Britain.'
 London.

1858—1866. Terquem, O., "Mémoires sur les Foraminifères du Liás" ('Mémoires de l'Académie Impériale de Metz,' 2me Série.—Mém. 1, 1858; Mém. 2, 1862; Mém. 3, 1863; Mém. 4, 1864; Mém. 5, 1866; Mém. 6, 1866).
 Metz.

1860. D’Eichwald, Edouard, "Lethae Rossica ou Paléontologie de la Russie" (vol. i, 'Ancienne Periode').
 Stuttgart.

 London.

 London.

 Vienna.

1861. Geinitz, Dr. H. B., "Dyas, oder die Zechsteinformation und das Rothliegende," Heft 1, 'Die animalischen Ueberreste der Dyas.'
 Leipzig.

1862. Carpenter, Parker, and Jones, 'Introduction to the Study of the Foraminifera.'
 London.

 London.

 Newcastle.

 Stuttgart.

 London.

 Vienna.

BIBLIOGRAPHY.

1872. Reuss, Dr. A. E. von, in Dr. H. B. Geinitz's "Das Elbthalgebirge in Sachsen, 1st Th. Die untere Quader.—iv Die Bryozoen und Foraminiferen des unteren Pläners." Cassel.

Glasgow.

Glasgow.

Edinburgh.

London.

London.

1874. Reuss, Dr. A. E. von, in Dr. H. B. Geinitz's "Das Elbthalgebirge in Sachsen, 2nd Th. Der mittlere und obere Quader.—iv, Die Foraminiferen, Bryozoen und Ostracoden des Pläners." Cassel.

London.

Id. ('Une Vraie Nummulite Carbonifère,' Traduit par Ernest Vanden Broeck,—Traductions et Reproductions pub. par la Soc. Malac. de Belgique.) Bruxelles.

1874. Vanden Broeck, Ernest, "Quelques Considerations sur la Découverte, dans le Calcaire Carbonifère de Namur, d'un Fossil microscopique nouveau, appartenant au genre Nummulite" ('Annales de la Soc. Géol. de Belg.,' t. i).

Bruxelles.

1874. Tute, J. S., "Organisms in Carboniferous Flint or Chert" ('Science Gossip,' August, 1874, p. 188).

London.

Berlin.

Newcastle.

London.

London.
§ 8. DESCRIPTION OF GENERA AND SPECIES.

Sub-Kingdom, PROTOZOA.

Class, RHIZOPODA.

Order, RETICULARIA.

(FORAMINIFERA.)

Sub-order, IMPERFORATA.

Family, LITUOLIDA, Carpenter.

Genus, SACCAMMINA, Sars.

Nodosaria (?), M'Coy.
Saccammina, Sars, Carpenter, Brady, Etheridge, J. Young, Lebour, Bennie, Rupert Jones.
Carteria, Brady.

General Characters.—Test free; consisting either of a single subglobular or pyriform chamber with central, pouting aperture, or a number of fusiform segments joined end to end. Texture arenaceous, compact, smooth externally, or nearly so, more or less rugose or labyrinthic on the interior surface.

Professor Sars, in his paper on the results of deep-water dredging on the coast of Norway,\(^1\) records the occurrence of a monothalamous Foraminifer, previously undescribed, to which he gives the name Saccammina sphærica, regarding it as the representative species of a new genus. No description, generic or specific, is given in the memoir referred to, nor indeed any further particulars respecting the organism, except that it was

\(^1\) "Fortsatte Bemerkninger over det dyriske Løvs Udbredning i Havets Dybder," in the ‘Vidensk.-Selsk. Forhandlinger,’ for 1868, p. 248.
SACCAMMINA CARTERI. 57

dredged in 450 fathoms, at which depth it appeared to be abundant. Subsequently a
number of specimens were forwarded to Dr. Carpenter, who described the type in
general terms as having a "test of regular spherical form with a flask-shaped neck; the
test composed of large sand-grains firmly cemented together so as to present a smooth
exterior, whilst their angles project into the interior of the cavity, which is filled in the
living state with sarcod." ¹

The Carboniferous form about to be described differs from the type thus
characterised in its moniliform mode of growth and the consequent distomous con-
dition of the chambers, but these may be regarded as mere morphological variations
of little weight as compared with similarity in general and minute structure. The fossil
species therefore has been placed in the same genus with the living deep-sea form, and the
generic characters have been defined afresh, so as to include the polythalamous
specimens.

SACCAMMINA CARTERI, Brady. Pl. I, figs. 1—7; and Pl. XII, fig. 6.

vol. iii, p. 131.

p. 177, pl. xii.

Young, 1873. Trans. Geol. Soc. Glasgow, vol. iv, part iii,
p. 259.

Lebour, 1875. Trans. N. of Eng. Inst. Min. Engineers,
vol. xxiv, p. 141, pl. xxxiii, fig. 2.

Bennie, 1876. Geol. Mag., n. s., Decade II, vol. iii, p. 47.

Characters.—Test free, consisting of several chambers joined end to end in single
series; chambers subspherical, fusiform or pyriform; texture arenaceous, compact;
exterior surface nearly smooth; interior sometimes smooth but usually rugose, often more
or less labyrinthic. Long diameter of the chambers about 1/8th inch (3·2 mm.) in
average specimens.

¹ Descriptive Catalogue of Objects from Deep-Sea Dredgings exhibited at the Soirée of the Royal
Microscopical Society, King’s College, April 20th, 1870,’ by Dr. Carpenter, F.R.S., p. 5, No. 4.
This somewhat important fossil formed the subject of a paper by myself in the 'Ann. and Mag. Nat. Hist.' (loc. cit.) about five years ago. A few separated segments collected by Mr. Charles Moore, whilst engaged upon the fossils found in mineral veins, had been sent to me a year or two previously with other microzoa for examination, but these were insufficient for accurate description, and the provisional name Carteria was given to them with the idea that they were chambers of an organism belonging to a new type of Lituloe. The bed of limestone on Sir W. C. Trevelyan's estate at Elfhills in Northumberland, which furnished the material for my paper, had been known for many years, and its physical peculiarities had not passed unnoticed, but it had not been submitted to microscopic examination, and had been generally regarded as a pisolitic or concretional rock. The particular layer of the Four-fathom Limestone, characterised by the presence of Saccammina has for generations been known to the Alston miners as the 'spotted post.'

I was not aware till long after the paper referred to was published that the organism had been previously recognised as a fossil, still less as a Foraminifer. I find, however, by Mr. Bennie's note in the 'Geological Magazine' for January, 1876, that Saccammina had been collected by Mr. R. Gibbs as far back as the year 1858 or thereabouts, and that the specimens were entered by the late Mr. Salter in the Jermyn Street Catalogue of Fossils, published in 1865 as "Foraminifera in Limestone; Cat Craig, Dunbar," though without further particulars.

My attention has also been called to Professor M'Coy's description in the year 1854, of a Carboniferous fossil which he names "Nodosaria fusulinaformis," collected in the Parish of Shivey, Co. Tyrone, Ireland. The brief verbal description answers fairly to the general characters of Saccammina as far as it goes, except in the statement that the organism "agrees almost perfectly with d'Orbigny's Nodosaria rudis and N. ryrosa;" but it appears to me insufficient, in the absence of any assistance from figures, to identify the species. I have endeavoured to obtain further information from the officials of the Irish Geological Survey, and from other geologists likely to be acquainted with the subject, but hitherto without result. Under these somewhat difficult circumstances I have thought the course least open to objection and certainly that least likely to lead to confusion would be to retain the name by which the fossil has become generally known amongst geologists and palaeontologists.

The characters of the Carboniferous Saccammina and its mode of occurrence will be more satisfactorily gathered from the figures on Pl. I than from any mere verbal description. It is essentially a rock-builder; that is to say, whole beds of limestone of large extent and considerable thickness appear to be chiefly, and in places entirely, composed of its remains. The description originally given of its occurrence in the two beds at Elfhills in Northumberland applies equally to rock specimens from other localities, and may be repeated without material alteration.

"The uppermost bed exposed in the Elfhills quarry appears to be entirely com-
posed of spheroidal or fusiform bodies, but so aggregated and infiltrated that they form an intensely hard dark-coloured limestone, the freshly fractured surface of which appears almost homogeneous and sometimes subcrystalline. It is, however, readily acted upon by the atmosphere; and the weathered portions reveal a spheroidal structure that might at the first glance be assigned to purely physical causes depending on some peculiarity in the mode of deposit. A fair idea of the characters of the rock forming this bed may be gained from Plate I, fig. 1, which represents an average specimen, with the upper surface considerably weathered. Very frequently the disintegration, instead of being merely superficial as in the figured specimen, extends to a considerable depth, leaving the stone in the condition of a crumbling mass of spheres. A layer in this state often exists between the surface-soil and the hard rock; and by a little treatment the fossil portions may be obtained from it quite clear of the matrix. A few feet below this upper layer (in the same section), is a second and more considerable bed, with the same sort of fusiform bodies distributed through its entire length and thickness. The individual specimens are larger than those occurring in the later deposit, but they do not constitute nearly so considerable a proportion of the entire rock. The segments do not appear to differ in structural characters from those found in the upper bed."

Notwithstanding the black and to the naked eye almost homogeneous texture of the rock as exhibited by a freshly fractured surface, a section thin enough to be transparent shows exactly the structure that might be expected from the condition of the disintegrating portions—a mass of fusiform segments cut in various directions. Such a section is seen in Pl. XII, fig. 6.

The dimensions of the individual segments vary considerably in different localities, indeed even in the same bed specimens differing much both in size and shape may be found, as shown in Plate I, fig. 3. These, however, represent an extreme range, and in many rocks the chambers are exceedingly uniform in external characters averaging about \(\frac{1}{8} \) inch (3·2 mm.) in length, and \(\frac{1}{14} \) inch (2·1 mm.) in transverse diameter; large specimens may be found measuring \(\frac{1}{6} \) (4·2 mm.) or even \(\frac{1}{3} \) inch (5·mm.) by \(\frac{1}{6} \) (2·8 mm.) or \(\frac{1}{2} \) inch (3·2 mm.); but such are of rare occurrence. Sometimes they are more elongate; and extreme examples have been noted in which the conjugate and transverse diameters were in the proportion of 3 to 1. The two ends are usually produced and tubular, to permit the passage of sarcod stolons or pseudopodia: they are sometimes symmetrical, but more frequently one end tapers more gradually than the other.

Owing to the tenacity of the connecting stolons, the segments are almost invariably found separated. Occasionally the weathered surface of the rock reveals two or even three chambers united in a line, but this is quite an exceptional circumstance. The dissociation of the segments is probably entirely due to external agencies, for that the addition of chamber to chamber might go on indefinitely under favorable conditions can scarcely be doubted. Nor does this rest on mere assumption, as reference to Plate I, fig. 4,

CARBONIFEROUS AND PERMIAN FORAMINIFERA.

will demonstrate. This figure represents a fossil shell (Euomphalus ?) found by Mr. F. M. Balfour of Trinity College, Cambridge, in the Carboniferous Limestone of Haddington-shire, about three miles from Dunbar. On grinding the specimen it was found that what had been the empty cavity of the shell was partially occupied by the remains of Saccammina which, when living, had taken up their abode there, and a chain of fusiform segments was exposed exactly as it appears in the drawing. Making a little allowance for the irregularity of the line of growth, it may be assumed that one segment has been out of the plane of the section and has been ground off, and if so this individual specimen has consisted of not less than eleven chambers united by stoloniferous tubes.

The test of Saccammina is essentially composite and arenaceous, the constituent particles being fitted and cemented together so as to give a nearly smooth exterior. The interior surface varies a good deal in different specimens. Sometimes it is nearly smooth, or roughened only by the projecting angles of the constituent sand-grains, which are usually much smaller in size than those selected by the recent species for shell-building purposes. In other cases the inner surface is covered with a network of short delicate labyrinthic growths, as seen in Pl. I, fig. 5.

Peculiar conditions of infiltration render it very difficult to speak in positive terms concerning the minute structure of the test. Plate I, fig. 6, represents a highly magnified tangential section which, though insufficient for the determination of the size or form of the constituent sand-grains, demonstrates clearly enough the arenaceous structure of the test both in its compact and labyrinthic portions.

There may frequently be observed on the exterior of the segments minute circular scars, of which Plate I, fig. 7, is an example. They are formed of three, four, or more slightly raised, granular, concentric rings, the outermost having a diameter of a thirtieth of an inch (0.85 mm.) or less. It is not easy to offer a satisfactory explanation in respect to them, but they are of too frequent occurrence and too uniform in character not to have a meaning, and therefore cannot be passed over entirely without notice—in some cases they look like the result of the repair of an injury to the test.

In the Saccammina limestone, the matrix is usually softer than the fossils embedded in it, and frequently the infiltrated matter which occupies the interior of the segments is harder than the fossilized test. Chemical analysis being resorted to for an explanation, it was found that some specimens of the rock contained a very large percentage of silica. If a number of segments of Saccammina from the disintegrated rock be broken, it will be found that the interior of each is occupied either by a smooth amorphous cast completely filling the cavity, or, much less frequently, by a loose tuft of crystals. The amorphous casts have been found to consist of colloid silica; the crystalline tufts (Plate I, fig. 5), of carbonate of lime. The mineral contents of a large number of chambers, taken at random from a piece of the weathered Elfhills Limestone, yielded more than 90 per cent. by weight of silica, whilst the tests themselves were almost purely calcareous.
SACCAMMINA.—LITUOLA.

The observations on this species have been made almost solely from Northumbrian specimens, but the same conditions appear to prevail very generally, though varying in degree.

Saccammina Carteri is not likely to be confused with any other fossil which we are at present acquainted with, but unorganized concretional limestones may very readily be mistaken for it, and indeed very frequently are so. I possess a considerable collection of oolitic and pisolitic rocks of Carboniferous, Devonian, and Silurian age, which have been sent to me from various parts of the world under the impression that the constituent spheroids, single or coalescing, were segments of this fossil or of some allied species. In many of these the general resemblance to Saccammina is very striking, and it has often been impossible to come to any conclusion as to the real structure of the rock without having recourse to thin microscopical sections.

Distribution. In England the occurrence of Saccammina Carteri is confined to the northern portion of the Carboniferous area. Throughout Northumberland and as far south as Alston in Cumberland, its appearance is limited to the Four-fathom Limestone, but in Weardale (Durham) it has been found in one locality at a considerably higher horizon—the Great Limestone. In Westmoreland only one locality has been noted, and this is regarded as belonging to the lower series of beds—the Scar limestone.

In Scotland its geological range is very great. It has been traced by the Survey collectors from the Calcareous Sandstone Series, through the Lower Carboniferous Limestone group, into the Upper Carboniferous Limestones, though in the later beds it has only been recorded from one or two localities.

From Belgium I have a number of quite characteristic specimens from the Calcaire de Visé, the uppermost division of the Carboniferous limestones of that country.

Genus, Lituola, Lamarck.

Serpula (in part), Schröter.

Lituola, Lamarck, Blainville, d'Orbigny, Reuss, Parker and Jones, Carpenter, Seguenza, Brady, G. M. Dawson, Robertson, Vanden Broeck.

Lituolites, Lamarck, Parkinson, Blainville.

Spirolina (in part), d'Orbigny.

Nonionina (in part), d'Orbigny, Schultze, Williamson, Parfitt.

General characters.—Test free, nautiloid or crozier-shaped, either entirely spiral, or spiral in the arrangement of the early segments and rectilinear in the later ones.

1 For details concerning the distribution of the various species of Foraminifera see the Tables at the end of the paper (pp. 153—161). This and the corresponding paragraphs appended to the descriptions of the species are summaries only.
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

Interior labyrinthic, or having the chamber cavities subdivided by irregular, ramifying septa. Texture arenaceous, rough externally. Aperture irregular, compound, or dendritic.

It will be seen by the above brief summary of characters that the term (Lituola) is here employed very much in the restricted sense in which it is used by German systematists; that is, to the exclusion of the adherent Lituoline forms (Placopilitina d'Orb.), the uniserial, non-convoluted varieties (Reophax, Montfort), and those with non-labyrinthic chamber cavities (Haplophragmium, Reuss)—all of which hitherto have usually been included in the genus by English authors. On a previous page an outline of the general scheme of classification of Foraminifera propounded by Professor Reuss was given, and this may properly be supplemented by his views on the arrangement of the group "Lituolidea" as elaborated in his latest work, together with his preliminary remarks thereupon. The summary of which the following is a translation will be found in the second part of "Das Elbthalgebirge in Sachsen," p. 119, a memoir published in 1874, that is the year following the lamented death of its author.

"1. Lituolidea."

"Test free or attached, either entirely spiral or spiral in the earlier and rectilinear in the later portions, or else having the chambers strung together in a single, almost straight, or crooked line. The chambers often nearly regular, with simple undivided cavity, or sometimes having the interior subdivided by very irregular, shelly ingrowths. Aperture simple or compound, externally cribiform, perforated.

"The English investigators of the Foraminifera place together almost all the Lituoline forms under the genus Lituola, which thereby is endowed with a very wide range. I prefer, even on palæontological grounds, notwithstanding an undeniable close relationship to arrange them in a larger number of groups. This result is brought about in the following scheme:"

2. Test free.
 a. Entirely spiral, orifice crescentic, situated on the inner margin of the terminal chamber adjoining the previous convolution. (Nonionine forms.)
 b. Test with spiral commencement, later chambers in straight series, crozier-shaped; aperture simple or compound, terminal. (Spiroline forms.)
 c. Test completely spiral. Aperture rounded or elliptical, approximately in the middle of the convex septal plane. (Orbignyina, von Hagenow.)

b. Chamber cavities subdivided by irregular, ramifying septa, cellular.
 a. Test spiral at the commencement afterwards straight, crozier-shaped; mouth dendritic, labyrinthic or compound. Lituola, Lamarck.
b. Segments joined together in a single row. Test straight and
Nodosaria-like, or areuate like _Dentalina_. The terminal aperture simple.
Haplostiche, Reuss."

Minute criticism on this scheme of classification would be out of place for many
reasons; partly in that it would occupy space that could not very well be spared for it,
but much more because until the full bearing of the results of recent deep-sea dredgings
is understood, it would be futile to suggest terms for its modification or revision. The
vast additions to our knowledge of the arenaceous Rhizopoda which have accrued from
researches made within the last few years on the deep-sea bed will, it is hoped, yield the
basis for a more satisfactory arrangement of the entire group than has hitherto been
practicable. One or two points, however, require notice. Professor Reuss’s group
"_Lituolidea_" must not be supposed to be coextensive with the family "_Lituolida_" of
Messrs. Carpenter, Parker, and Jones, for in point of fact it scarcely even includes as
much as the generic term "_Lituola_" as employed by English authors. The propriety of
separating the labyrinthic and nonlabyrinthic forms seems confirmed by the strikingly
distinct characters of the large deep-sea specimens, and this has led to the adoption of
Professor Reuss’s generic term, _Haplophragmium_, as distinct from _Lituola_ proper, in the
present paper.

If it be desirable to separate the moniliform or uniserial varietics from the helicoid
forms by a generic or subgeneric term, de Montfort’s name _Reophax_ must take prece-
dence of Reuss’s _Haplostiche_. But it is unnecessary to dwell on points like these.
Lituola (proper) is represented in the Carboniferous beds by the typical form, and by
a very fine large nautiloid variety, both of them very rare.

Lituola nautiloidea, Lamarck, Pl. VIII, fig. 7 a, b.

pl. lxii, fig. 12 ;—1822, Anim. s. Vert., vol. vii, p. 604,
No. 1.
— _diffornis_, Id. Ibid., vol. v, p. 243, No. 2 ;—vol. viii, pl. lxii, fig. 13, a, b ;
— _nautiloidea_, Parkinson, 1811. Organic Remains, vol. iii, p. 161, pl. xi,
fig. 5.
— _diffornis_, Id. Ibid., p. 161, pl. xi, figs. 6, 7.
Lituola nautiloides, Lamarck, 1822. Tableau Encl. Méth., pl. cccxiv, fig. 6.
— _diffornis_, Id. Ibid., pl. cccxvi, fig. 1, a, b.
— (et _Lituolites_ nautiloides), Blainville, 1824. Dict. Sci. Nat., vol. xxvii,
p. 81 ;— vol. xxxii, p. 190 ;—Atlas Conch., pl. xx,
fig. 3 ;—1825, Malacologie, p. 381, pl. xi, fig. 3.
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

Lituola nautiloides, d'Orbigny, 1840. Mém. Soc. Géol. Fr., vol. iv, No. 1, p. 29,
pl. ii, figs. 28—31.
— — Parker and Jones, 1860. Ann. and Mag. Nat. Hist., ser. 3,
vol. v, p. 287.
pl. x, figs. 5—8.
— — Carpenter, 1862. Introd., p. 144, pl. vi, fig. 44.

Characters.—Test free, elongate, compressed, crozier-shaped, rounded at the base,
truncate or convex at the apex, margin rounded. Early chambers convoluted, later ones
in straight series. Segments numerous, narrow. Aperture labyrinthic, or consisting of
numerous, irregular orifices. Length \(\frac{1}{10} \) inch (2.5 mm.).

What has already been said in the general description of the genus leaves little
beyond matters of detail to be noticed concerning this its central type.

The dimensions of Lituola nautiloides above given refer only to the Carboniferous
specimens—it is in the microzoic rocks of Cretaceous age that the species appears
to greatest advantage. According to d'Orbigny it attains the length of 7 millim. or more
than a quarter of an inch in the White Chalk of the Paris basin, and Professor Reuss
records even larger dimensions, viz. 9.87 mm., or nearly four tenths of an inch, in
specimens from the Chalk of Westphalia. Not only does the species vary in size, but
also in many other external features, such as the condition of the surface as to rugosity,
the relative development of the spiral and straight portions of the test, and the convexity
of the segments. It is necessary to bear these facts in mind in judging of specimens—
few in number, and worn and obscure in their characters—as they appear in the Carbo-
niferous beds, yet such forms as that represented in the plate are but little removed
in morphological characters from some of those of Cretaceous origin figured by Professor
Reuss.

Distribution.—Very rare; only known as a Carboniferous species by one or two spec-
imens found in the Bottom Limestone at Skelly Gate, near Ridsdale, Northumberland.

Lituola Bennieana, nov., Pl. I, figs. 8—11.

Characters.—Test free, nautiloid, subglobular, somewhat depressed at the umbilicus;
margin rounded. Segments few in number, about five visible externally, inflated.
Aperture compound, consisting of several orifices of various sizes, distributed irregularly
over the face of the terminal segment. Interior labyrinthic. Diameter \(\frac{1}{10} \) inch (2.5 mm.)
or more, thickness \(\frac{1}{2} \) inch (2.0 mm.).
LITUOLA.

In the collection of Carboniferous fossils formed by the Geological Survey of Scotland are a few examples of a large nautiloid Foraminifer of unmistakably Lituoline characters. They are by no means uniform in general contour and bear evidence of having undergone a certain amount of change from external causes. The specimen figured (Pl. I, figs. S, 9) is perhaps the best of the set, and is probably in nearly its original condition in form and structure. Others appear to have been subjected to lateral pressure, and are of lenticular (biconvex) shape, whilst some few are merely casts, from which the test has entirely disappeared.

The finer specimens are perhaps the largest nautiloid Foraminifera of Carboniferous age hitherto met with, some of them being more than one tenth of an inch in diameter. The exterior surface of the test seems to have been a good deal worn, and the component sand-grains, which are remarkably uniform in size, are very clearly shown. The roughness and unevenness of its inner surface may be gathered from the appearance of some of the casts. One of these, from a smaller individual of the same species is represented in Pl. I, fig. 9. The minute structure of the test has in some instances been perfectly preserved by the completeness of the calcareous infiltration, and the transparent section of such a specimen, under a high magnifying power (Pl. I, fig. 11), shows the peculiar tubular or cancellated ingrowths, which, partially or entirely filling the cavities of the chambers, form what is known as "labyrinthic" structure. On the other hand, to the same complete infiltration may perhaps be attributed the difficulty of determining the nature of the general aperture. Depressions on the anterior face of the terminal segment seem to indicate the existence originally of a number of irregular perforations of various sizes; and a compound aperture of this sort is consistent with the known tendency of the Lituolida.

The only Carboniferous species to which _Lituola Bennieana_ bears any great resemblance, or with which it is likely to be confused is _Endothyra crassa_. The latter, however, though larger than many of its congeneres, is smaller and smoother in texture than the Lituoline form; it has also a much larger number of chambers, is more compactly built, has the simple aperture of its own genus, and has no labyrinthic structure: an array of characters sufficient to distinguish the two under any ordinary circumstances.¹

The first specimens of _Lituola Bennieana_ which came under my notice were obtained by Mr. James Bennie the assiduous collector to the Geological Survey of Scotland, whose name may well be associated with so fine a species.

¹ Since this has been in the printer's hands I have received a considerable supply of _Lituola Bennieana_ from Mr. R. Etheridge, jun., and it now appears that the species is comparatively common in the Mount Lothian Quarry, where it is associated with _Endothyra crassa_. Further examination confirms the distinctive characters above enumerated in all essential points, and seems to indicate that the labyrinthic structure and cribriform aperture are the most generally reliable. But the labyrinthic or cancellated portion is often only a thin layer lining the inner surface of the shell-wall, and to observe it satisfactorily it is necessary to make horizontal sections very near the surface of the test.
Distribution.—Bents' Quarry, near Carlops, Peeblesshire, and Mount Lothian Quarry, near Penicuick, Edinburghshire; in both places, in the shales connected with the No. 2 Limestone of the Lower Carb. Limestone group. In the Calcaire de Namur at Flémalle near Liége, Belgium, and in the Fusulina-limestone of Miatschkovo, near Moscow, Russia. In most of the localities very rare.

Genus.—Haplophragmium, Reuss.

Spirolina (in part), d'Orbigny, Roemer, Reuss.
Spirolinites, Northampton, Mantell.
Lituola (in part), d'Orbigny, Parker and Jones, Carpenter, Brady.
Haplophragmium, Reuss, Karrer, Stacke, Günbel.
Proteonina (?), Williamson.
Polymorphina (in part), Terquem.

General characters.—Test free; either entirely spiral and convoluted, or spiral only in the earlier portion, the later segments being arranged in single rectilinear series. Segments numerous, usually distinct; cavities simple, undivided. Texture arenaceous, more or less rough externally. Aperture terminal, central; simple or compound.

As has been already stated, the distinction between Haplophragmium and Lituola, in Professor Reuss's arrangement, depends upon the labyrinthic structure of the interior in the latter genus as contrasted with the undivided chamber-cavities of the former. In the light of recent researches upon the large arenaceous types of deep-sea Rhizopoda, the significance of this peculiarity may be somewhat greater than has been hitherto recognised amongst us, and in spite of some difficulty attending its adoption, it may serve as a useful purpose in the subdivision of the class.

Only a single variety of Haplophragmium has been found in the Palæozoic formations, and this does not correspond satisfactorily in minor characters with any description hitherto published.

Haplophragmium rectum, Brady. Pl. VIII, figs. 8, 9.

Characters.—Test elongate, crozier-shaped. Spiral portion depressed, relatively very small, margin rounded, septa somewhat indistinct: linear portion long, gradually increasing in diameter, sutures more or less excavated. Segments numerous, slightly
inflated. Aperture simple. Texture finely arenaceous, nearly smooth. Length about \(\frac{1}{10}\) inch (0.43 mm).

The delicate little fossil, to which the specific name now adopted was some years ago provisionally given, does not appear to have been otherwise figured or described. As a species it is similar in many of its morphological characters to *Haplophragmium Humboldti*, a Tertiary form described by Professor Reuss, though it differs considerably in others. For instance, *H. Humboldti* has a stoutly made test 3 mm., or about one ninth of an inch in length, and with a much greater proportionate thickness than *H. rectum*, and is therefore many times the size of the slender Carboniferous form. Again, the spiral portion of the shell of the Tertiary species, besides being relatively very large, has a sharp angular periphery, whilst in the older form the helicoid chambers are of insignificant proportions and have their margins rounded. Other differences might be enumerated, but in the absence of intermediate varieties those which have been advanced are sufficient to warrant distinctive appellation, though a larger supply of specimens would be necessary to determine the range of variation to be included under the new name.

Distribution.—Carboniferous Limestone (Yoredale) at Grassington, near Skipton, Yorkshire,—very rare.

Genus.—*Climacammina*,* Brady.

Textularia, Brady (in part).

Climacammina, Brady.

General characters.—Test free, consisting of many segments of irregular contour and unevenly combined; typically, biserial or subspiral in the earlier, uniserial in the later stages of growth. Texture finely arenaceous. Interior more or less labyrinthic. Aperture irregular or cribriform. Septation obscure.

It has not been without considerable hesitation that the peculiar forms which were at first referred provisionally to the genus *Textularia* under the name *T. antiqua*, have since been taken as the representatives of a generic group. That the specimens bear a close analogy to the "Bigenerine" varieties of *Textularia* will be seen by reference to the figures (Pl. II, figs. 1—5), especially to those of the less irregular examples such as figs. 1, 2, 3.

2 *Derivation*, Greek σταδίων, σταδίως, a ladder, and ἀναμορφή, sand.
1 or 3, but more complete examination shows that the resemblance is that of analogy, rather than of relationship. The arenaceous exterior of *Bigenerina* (as of *Textularia* generally) is the result of sandy incrustation on a normally perforate shell-wall; the shell in that genus is regularly and neatly built, and the aperture takes the form of a single, rounded, central, terminal orifice. These are more important peculiarities than the mere order of the segments. On the other hand, the thick, finely arenaceous tests of the specimens under consideration, their irregular septation, labyrinthic chambers and compound apertures, are characters that necessarily give them a place amongst the *Lituolida*. In many particulars they bear considerable resemblance to varieties of the genus *Haplophragmium* figured by Reuss,¹ but the absence of the regular, depressed, spiral arrangement in the earlier chambers would, of itself, preclude their being associated with the typical members of that group; and observations especially on young and on monstrous specimens seem to indicate that these obscure Carboniferous forms are allied to *Valvulina* rather than to *Lituola* proper or *Haplophragmium*. In some young examples the earlier portion of the test, possibly at first the whole organism, is almost conical, and divergence from the *Valvulina*-like mode of growth begins in an uneven or oblique setting of chambers. But the conical aspect of this part of the test is lost as the Textularian habit is subsequently developed. On the whole it seems clear that such forms could not with propriety be assigned to any previously recognised genus.

Climacammina antiqua, *Brady*, Pl. II, figs. 1—9.

Characters.—Test elongate; subcylindrical, compressed or spatulate, unsymmetrical, sometimes curved at its commencement. Earlier chambers irregularly biserial or subspiral; later ones uniserial, often set on obliquely. Septation imperfect; sutures marked externally by depressed lines. Segments numerous, more or less ventricose externally; interior subdivided or labyrinthic. Shell-texture compact, firmly arenaceous. Aperture formed of several irregular orifices on the face of the terminal segment. Length $\frac{3}{15}$ to $\frac{1}{10}$ of an inch (1·0 to 2·5 mm.) or more.

A large number of specimens, presenting amongst them a wide range of variation in

¹ See especially *Haplophragmium irregular* and *H. aequale* in the memoir on the Foraminifera of the Chalk of Westphalia (*Sitzungsrb. k. Akad. Wissensch. Wien*, 1869, vol. xi, p. 74, pl. x, fig. 9, and pl. xi, figs. 2, 3).
external appearance, have been placed together under the single specific term *Clima-
camminina antiqua*. Some of them are long and flat, spatulate, tapering almost symme-
trically, as in Plate II, fig. 3; others are flat, curved at the commencement, with the
segments throughout set on obliquely like fig. 1; some have the early Textularian
chambers combined in a reversed manner, that is, with their broad faces in apposition, as
shown in figs. 4, 5; whilst occasionally instances are seen in which, probably from
irregular subdivision of some of the segments, the early portion of the test appears as
though triserial, or confused in its order of growth. Casts of the interior of the later
chambers have been found (figs. 6, 7), indicating that at times these must have taken
the form of a string of thick, round-edged, circular disks, regularly superimposed.

A transparent longitudinal section (Pl. II, fig. 8) shows an interior with confused
and imperfect septation; the chamber-cavities more or less subdivided, and filled by
labyrinthic ingrowths of the shell-wall—the arenaceous structure of the investment, and
the cancellated form of the supplementary growths, being readily made out under a high
magnifying power, as shown in fig. 9.

The compound character of the aperture may be observed either from the test itself,
as represented in fig. 4, or still better from the casts of the interior of the terminal
chambers before alluded to (figs. 6, 7), which of course are exact models of the
sarcode lobes of the animal, even to the little protuberances filling up the pseudopodial
apertures.

Distribution.—Found in both the lower and higher series of the Carboniferous Lime-
stone (Scar and Yoredales) of England, and in the Lower and Upper Carboniferous
Limestone Groups of Scotland. Localities numerous, but the number of specimens
ever very large. Doubtful specimens have been noticed in the Fusulina-limestones of
Russia.

Genus.—Trochammina, Parker and Jones.

Nautilus (in part), Montagu, Pennant, Turton.
Webbina (in part), d'Orbigny.
Operculina (in part), d'Orbigny, Reuss, Brauns.
Cornuspira (in part), Reuss, Karrer, Schwager, Terquem.
Orbis (in part), Strickland.
Serpula (in part), Geinitz, Morris, Bölsche, Schmid.
Foraminites (in part), King.
Rotalina (in part), Williamson, Alcock, Parfitt.
Spirillina (in part), Williamson, Rupert Jones.
Trochammina, Parker and Jones, Reuss, Carpenter, Karrer, Brady, Miller and Vanden Broeck,
Robertson, Siddall.
Ammodesicus, Reuss, Bornemann, jun.
Involutina (in part), Terquem.
General characters.—Test free or attached; very variable in form, consisting of one or many chambers: thin in substance, texture arenaceous, the sandy constituents embedded in a calcareous, often more or less ferruginous cement, and not projecting above the surface of the shell, which is nearly smooth. Polythalamous varieties are without proper septa, the division into chambers being effected by the constriction or of the primary shell-wall.

As already stated the genus *Trochammina*, in its structural relations, stands between *Lituola* on the one hand, and *Involutina, Valvulina*, and *Endothyra* on the other. The division of the series into these four quasi-generic groups is to be accepted as a convenient means of arranging, in something like intelligible sequence, a large number of varietal and subvarietal forms which could not be dealt with otherwise—not as the expression of a classification founded on morphological characters capable of definition in accurately distinctive terms.

Comparing *Trochammina* with *Lituola* the thick test and labyrinthic interior of the latter type are sufficiently distinctive, but the minute structure of the shelly investment is also different in the two genera. The true *Lituola* are ordinarily more or less rough externally from the excess of relatively large sand-grains employed in the building-up of the test, whilst the *Trochammina* with smaller and less angular constituent grains (Pl. II, fig. 14), and a much larger proportion of calcareous cement, have a comparatively smooth exterior surface. Whilst, therefore, both have composite tests, *Lituola* may be spoken of as "sandy," and *Trochammina*, in distinction, as "cemented," in texture. *Trochammina* inhabits shallower water than *Lituola*, and in estuaries and brackish pools its test becomes thinner and less calcareous, the mineral constituents being replaced by a sort of chitinous membrane.¹ The distinction between *Trochammina* and the Liassic genus *Involutina* of Terquem is still less easy to reduce to words. In general terms *Involutina* (accepting *I. liassica* as its representative) approaches much more nearly in structural features to the lower Rotalians. Its test is often a good deal thickened by the deposit of nearly homogeneous shell-substance and, occasionally at least, it shows, like *Valvulina*, a perforate primary shell-wall.

It is amongst the small recent specimens living in comparatively shallow water that the chief difficulties in separating the genera *Lituola, Trochammina*, and *Valvulina* are experienced; indeed, as has been stated both by Messrs. Parker and Jones² and myself,³ a series of individuals referable to these three types may be readily got together forming a complete chain, showing no break or missing link to warrant specific, still less generic separation. It is true that in a chain so arranged many of the links might be supplied

by poor, starved individuals, but such specimens cannot be ignored, as they exist in considerable numbers in some localities side by side with those that are well developed, and admit of no doubt as to their relationship.

The general history of the genus *Trochammina* is given in the 'Monograph of the Foraminifera of the Crag,' p. 25, and its structural features are minutely described in Dr. Carpenter's "Introduction," p. 141. Messrs. Jones, Parker, and Kirkby's paper on the "Permian *Trochammina pusilla* and its Allies," contains a comprehensive summary of what was known up to the date of its publication concerning the Palaeozoic representatives of the genus; and it is a matter of some interest, that of the four species to which the memoir is chiefly devoted, three are now shown to have come down from Carboniferous times. Still more striking is the fact that at least two of these, viz. *Tr. incerta* and *Tr. gordialis*, are not only found in fossiliferous beds of many succeeding formations, but may at the present day be collected, living, at moderate depths in our European seas.

The brown colour of the test in *Trochammina*, due to the ferruginous constituents of the cement, is regarded by many as a character of almost generic significance; it is therefore necessary to remark, that the specimens from some of the Mountain Limestone beds are nearly pure white, and the same is often the case in those from Permian sources.

Professor Reuss applies the generic term *Ammodiscus* to the Spirilline non-septate varieties of *Trochammina*, and in this course he has been followed by some of his fellow-countrymen. I concur, however, with Messrs. Parker and Jones in regarding any generic or even subgeneric division of the group on this ground as undesirable. The distinction rests on an artificial basis, or rather on an idea, and any arrangement in which it is adopted leaves the numerous intermediate and partially septate varieties, which appear wherever *Trochammina* abound, quite unprovided for.

Trochammina incerta (d'Orbigny).

Operculina incerta, d'Orbigny, 1839. Foram. Cuba, p. vi, figs. 16, 17.

2 In the lists of synonyms of the present species and also of *Trochammina gordialis* and *Tr. pusilla* I have made use of the materials collected by my friends Messrs. Jones, Parker and Kirkby for their paper before alluded to on the "Permian *Trochammina*" as far as they go, and am glad to make this practical acknowledgment of the value of their labours.
— in fima, Id. Ibid.
— sp., Id. Ibid.

TROCHAMMINA INCERTA, Parker and Jones, 1862. In Carpenter’s Introd. Foram., pp. 141, 312, pl. xi, fig. 2.

— var. irregularis, Id. Ibid., figs. 11, 12.

INVOLUTINA SILICEA, Terquem, 1862. Mém. Acad. imp. Metz, for 1860, 1861, p. 450, pl. vi, fig. 11. (Deuxième Mém. Foram. du Lias.)
— aspera, Terquem, 1863. Ibid., for 1862—1863, p. 221, pl. x, fig. 21. (Troisième Mém. Foram. du Lias.)

SERPULA ROESSLIERI, Schmid, 1867. Neues Jahrbuch für Min., Jahrg. 1867, p. 583, pl. vi, figs. 46, 47.

CORNUSPIRA OOLITHICA, Schwager, 1867. In Waagen’s ‘Ueber die Zone des Amm. Sowerbyi,’ vol. i, part iii, p. 655, pl. xxxiv (xi), fig. 4.

Characters.—Test plano-spiral, discoidal, thin; consisting of numerous, narrow, more or less rounded convolutions of a non-septate tube of nearly uniform width. Aperture usually formed by the open unconstricted end of the tube. Diameter $\frac{1}{150}$th. inch (0·5 mm.)
TROCHAMMINA.

In the recent condition *Trochammina incerta* is very uniform in its general character and appearance; and, as stated by Prof. Williamson (‘Monogr,’ p. 93), it is widely distributed but nowhere abundant. This however cannot be said of its occurrence in the Carboniferous rocks. Wherever it exists as a Palæozoic fossil, it appears in large numbers, and the specimens present a correspondingly wide range of variation in minor characters. Many specimens are just such as might be dredged at the present day on our own shores, consisting of five or six convolutions in one plane of a non-septate tube, the convolutions nearly uniform in breadth, and the tube having an approximately circular transverse section. The examination of a large number of individuals reveals many little modifications of these simple typical characters. Sometimes the number of convolutions is smaller and their width greater, forming a test of similar diameter and without increase of thickness (Pl. II, fig. 12), and in such the tube presents a long oval, instead of a circular transverse section. Other examples show a tendency in the successive convolutions each to embrace, to a limited degree, that immediately within it, and the section of the tube is then more or less crescentiform. In some of the larger complanate shells (fig. 11) the spiral tube increases in width with each succeeding circle. Lastly, it is not at all uncommon to find the shell-wall thickened, especially near the centre of the disc, the excavated sutured line filled up, and the test assuming thereby a more or less lenticular or bi-convex figure. In these instances the calcareous cement is largely in excess of arenaceous material, the surface of the test is nearly smooth, and even permits, by a sort of transparency, the course of the spiral cavity in the interior to be traced (Pl. I, fig. 13). These modifications, in addition to many irregularities in external contour, arise from what may be regarded as accidental circumstances, and present no ground for specific or varietal subdivision.

It seems necessary to make passing allusion to some of the Mesozoic *Trochamminae* figured by M. Terquem under the generic terms *Involutina* and *Cornuspira*. M. Terquem appears to stand alone amongst students of Foraminifera in his non-acceptance of shell-texture as the basis of the primary division of the order. Thus, *Cornuspira* with its imperforate porcellanous shell, *Trochammina* with its imperforate arenaceous test, and *Spirillina* with its brilliantly hyaline, porous walls, the isomorphie genera of the three primary groups of Reticularian Rhizopods, are regarded by him as one genus. M. Terquem has been good enough to send me, for purposes of comparison, type specimens of several of the species of *Involutina* described in his memoirs on Liassic and Oolitic Foraminifera, together with notes upon them indicating some change in his views concerning that genus; also specimens of the *Cornuspira* represented in pl. xxv of his third ‘Mémoire on the Foraminifera of the Oolite,’ viz. *C. granulosa, C. infraoölithica, C. punctulata, C. concava, C. aspera,* and *C. occlusa*, figures 12 to 20 respectively. After a very careful examination of this series I may confess that I find nothing in their characters that seems to me to justify varietal, much less specific separation one from another. In his text, p. 242, the author objects to the generally received definition of the genus
Carbospira, based upon a "test, calcareous, porcellaneous, and compact," on the ground that with a magnifying power of eighty diameters he is able to demonstrate in a large number of specimens the existence of a multiplicity of pores. Supposing this to be the case, the specimens would be assigned by rhizopodists generally to the genus *Spirillina*, not to *Carbospira*. The rigorous examination of the set of specimens M. Terquem has been good enough to furnish, with powers varying from twenty diameters to six hundred or more, has not enabled me to detect pores in the shell-wall in a single instance. Lest I should have been unconsciously influenced by familiarity with similar organisms, the "imperforate" character of which has never been questioned, the specimens were submitted to a friend of great experience in the use of high magnifying powers, though in investigations of another order, and his reply was decisive that no perforations existed,—that any appearance as of pores was caused by mere superficial rugosity or by minute tubercles, and that the illusion by which they appeared like pores was readily dispelled by varying the method of illumination. It should, however, be remarked, that the Mesozoic specimens are very minute, and the structural characters are much more obscure and difficult of determination than in individuals of larger dimensions. I must add that it is with great deference to the views of so assiduous a student of fossil Microzoa as M. Terquem that I give expression to conclusions differing from his on a somewhat important point.

Distribution.—*Trochammina incerta* is one of the most abundant of Paleozoic Foraminifera. It is found throughout the Carboniferous Limestones of England, and in the Lower and Upper Groups of Scotland. I have note also of its occurrence in the *Fusulina* rocks of the Caucasus.

In the Permian beds specimens are common, and often attain very fine dimensions. It is found in the Lower and Middle Magnesian Limestones of England, and in the Zechstein proper of Germany.

Trochammina centrifuga, *Brady*. Pl. II, figs. 15—20.

Characters.—Test depressed, thin, plano-spiral; formed of a tube of uneven diameter, convoluted in its earlier, rectilinear in its later stages of growth. Aperture terminal, round, usually unconstricted. Length about $\frac{1}{10}$th inch (0·5 mm.); diameter of spiral portion about $\frac{1}{100}$th inch (0·25 mm.).
TROCHAMMINA.

It may be doubted whether *Trochammina centrifuga* is more than a varietal modification of *Tr. incerta*, but it appears to be a well-marked form, and there is something distinctive in its mode of occurrence. Wherever it is found *Tr. incerta* is also present; but, on the other hand, out of fifty localities for the latter species, *Tr. centrifuga* has only been noticed in ten or twelve. In the localities where it does occur it generally exists in large numbers, not as a rarity. In applying to the form a distinguishing name I have, as in many other cases, been guided by convenience rather than by those strict zoological rules which seem inapplicable to the lowest types of animal life.

The test of *Trochammina centrifuga* begins its growth on the same plan as *Tr. incerta*, that is as a flat spire; but after a number of convolutions are formed, the course of the tube changes abruptly from spiral to rectilinear, and a straight arm of greater or less length is added to the previously discoidal test. The number of convolutions is very variable;—sometimes the primary portion consists of one or two turns of a wide, flat, irregular, spiral tube, at others (as in the section Pl. II, fig. 20) four or five revolutions may be observed, comparatively regular in outline and gradually increasing in width. In general contour the discoidal portion differs much in different specimens; sometimes it is nearly circular, often angular or altogether irregular; and the lateral surfaces are either bi-convex, depressed, or slightly concave with excavated umbilicus.

The rectilinear arm varies much in length. In what may be assumed to be adult specimens it projects to an extent about equal to the diameter of the disc. The end of the tube, which is usually open and unconfined or slightly thickenings at the rim, forms the aperture.

The external inequalities of the tube led at first to the supposition that there existed some sort of spurious or imperfect septation, and with this idea Mr. Charles Moore's specimens were provisionally placed with the *Involutina*, but horizontal sections show that the superficial irregularities are not connected with modifications of the shell-wall on its interior, and that the test is really, as shown in Pl. II, fig. 20, a non-septate tube. In transferring the species to the genus *Trochammina* it became necessary to alter its name, the term "incerta" being already occupied in that group, hence the adoption of the present name in the Catalogue of the Foraminifera of the Carboniferous beds of Lanarkshire, compiled for the "Memoirs of the Geological Survey of Scotland."

Distribution.—In the Lower Carboniferous Limestone beds (Scar) of England and of Scotland, *Trochammina centrifuga* is of very rare occurrence, having been noticed in only one locality in each country. In the Upper portion of the series, both in England (Yoredales) and in Scotland, it is much more frequently found, ten out of the twelve recorded localities pertaining to these higher groups of limestones.

1 'Report of the British Association,' loc. cit.
Trochammina anceps, nov. Pl. III, fig. 8, a, b.

Characters.—Test free, convoluted, discoidal, thin, consisting of a spuriously septate tube coiled in one plane. Septa marked externally by oblique slightly depressed lines. Diameter $\frac{1}{60}$th inch (0.4 millim.).

A variety closely allied to Trochammina incerta, or perhaps better regarded as a transition form between the non-septate Tr. incerta and the segmented, almost Rotalian Tr. inflata. The septation depends, as in all the subdivided Trochamminae, on the infolding of the primary shell-wall, not on the successive formation of chambers, each with its proper calcareous investment. It is a rare variety, and the specimens are nearly always of small size. They are chiefly interesting from the intermediate position they occupy.

Distribution.—Only noticed hitherto at a few localities in the higher Carboniferous Limestone (Yoredale) beds of England, and in the Lower Carboniferous Limestone Group of Scotland.

Trochammina annularis, nov. Pl. III, figs. 9, 10.

Characters.—Shell free, annular, spiral; formed of two or three convolutions of a non-septate tube. Convolutions irregular, seldom on one plane, but frequently more or less superimposed vertically; never commencing at the centre of the test, but leaving a space of about one third of the whole diameter quite open. Tube apparently twisted, especially at points in the earlier portion of its course. Diameter $\frac{1}{60}$th inch (0.17 millim.).

A very minute variety, intermediate in its morphological characters to Tr. incerta and Tr. gordialis; very rare, and, except that it is sometimes found with Tr. gordialis, little associated with other members of the genus. The two figures, Pl. III, figs. 9 and 10, drawn from different specimens, are fairly representative, the few examples which have been found being very uniform in character. From their small size, and extremely fragile nature, the specimens are probably often destroyed or washed away in preparing material for examination, and even when retained they are liable to be overlooked.

Distribution.—In the Four-fathom Limestone, Elfhills, Northumberland, and in the shale over No. 1, Limestone, Calderside, Lanarkshire. In both places rare.
Trochammina gordialis, Jones and Parker. Pl. III, figs. 1—3.

— squamata, var. gordialis, Id., 1865. Phil. Trans., vol. clv, p. 408.

Characters.—Test convoluted, rounded, irregular; composed of a tube of nearly even diameter, coiled upon itself in an irregular manner and in varying directions. The tube (as shown by transverse section) variable in shape; sometimes contracted at irregular intervals, twisted, or spuriously septate. Diameter, $\frac{1}{40}$th inch to $\frac{1}{30}$th or more (0·25 to 0·85 millim.).

Whether the trivial name "gordialis" was originally selected for this curious little organism, on the ground of its exterior resemblance to a coiled and complicated knot, or with reference to its morphological intricacy, is of little moment, for in either case it is quite appropriate. The form designated is the centre of an anomalous sub-group occupying in its modifications the wide area between the compact closely coiled, often almost conical Tr. charoides, and the regular, spiral, septate type Tr. squamata. Dr. Karrer, in his interesting memoir on the Foraminifera of the older beds of the Vienna Sandstone Series, above quoted, associates under one specific name forms which with us have been distributed under three quasi-specific heads, viz., Tr. squamata, Tr. gordialis, and Tr. charoides. Whilst recognising and cordially agreeing in the general views which have guided him in this course, it appears more consistent with the plan hitherto adopted in the present paper, to retain trivial names for the more important and more permanent modifications of each type, without insisting on a standard of specific distinctness, which, however well adapted to animals of higher organization, it would be vain to attempt to apply to the Rhizopoda. Nor is the method which has hitherto been followed by my colleagues and myself in this respect inconsistent with the constant endeavour to simplify the nomenclature of the Foraminifera by expunging the multitude of useless trivial names
which have burdened this department of zoology—names which have had their origin either in deficient observation, or in a disposition to ignore the terms employed by earlier writers. The specimens figured by Messrs. Jones, Parker, and Kirkby, from Permian sources, though generally of larger dimensions than those from Carboniferous beds, are not so characteristic. The tube in the Permian specimens has a larger diameter, but it is correspondingly shorter, and the number of convolutions not so great.

The Carboniferous examples are usually very minute, often not more than \(\frac{1}{30} \)th of an inch (0·2 mm.) in diameter, and the test is correspondingly thin and delicate; but full-sized specimens, such as that represented in Pl. III, fig. 3, are found sufficiently often to sustain the connection of the series.

Distribution.—Nowhere very common. The only note I have of its occurrence in the English Carboniferous rocks is in the Four-fathom Limestone at Elfhills, Northumberland. In Scotland it has been found in two or three localities in the Lower Carboniferous Limestone Group, and in Belgium in the Calcaire de Namur.

As a Permian fossil it is confined, so far as is yet ascertained, to the Middle Magnesian Limestone of the North of England.

Trochammina pusilla (Geinitz). Pl. III, figs. 4, 5.

Serpu? pusilla, Jones, 1850. In King's Monogr. Perm. Fossils, p. 57, pl. vi, figs. 7—9; pl. xviii, figs. 13, a—d.

Spirillina — Jones, 1856. In King, On Irish Permian Fossils,—Journ. Geol. Soc. Dublin, vol. vii, p. 73, pl. i, figs. 12, a, b.

— — Geinitz, 1861. Dyns, p. 39, pl. x, figs. 15—21, and pl. xii, fig. 1.

Characters.—Shell free, oblong, convoluted; composed of a non-septate or spuriously septate tube, coiled or doubled on itself more or less regularly, but not on a uniform plane. Aperture taking the form of the open end of the tube; circular or, where the tube is embracing, crescentic. Length, about \(\frac{1}{3} \)th inch (2·0 mm.).

This is an exceedingly abundant and well known Permian fossil, but its zoological affinities, owing to the obscurity and varableness of its characters, have puzzled a suc-
cessation of palaeontologists. Increased knowledge of the arenaceous group of Foraminifera has led to a better understanding of such simple forms; and Messrs. Jones, Parker, and Kirkby's paper on the "Permian Trochammina," before referred to, will be generally accepted as setting at rest the doubt which has existed as to the relationship of the group. Of the various drawings of the species given by these authors (see figs. 2—6 of their plate, loc. cit.) numbers 2 and 3 may be regarded as transitional, taking positions between *Tr. incerta* and *Tr. pusilla*, whilst figs. 4 and 5 represent the full characters of the latter, and fig. 6 a specimen verging towards *Tr. gordialis*. Of the two drawings of *Trochammina pusilla* given in Plate III of the present work, fig. 5 is from the Magnesian Limestone (Permian) of Tunstall Hill, near Sunderland, whilst fig. 4 is a Carboniferous specimen from one of Mr. Robertson’s Scotch gatherings. The latter is an unusually fine example, and possesses a somewhat singular character in the fringe of white subarenaceous shell-substance which lines the inner border of the convolutions. This is probably the effect of luxuriant growth, but I do not recollect having seen any other example of an arenaceous Foraminifer with precisely the same kind of limation.

Distribution.—Though isolated specimens have been found by Mr. Robertson in a single locality of the Lower, and in one locality of the Upper Carboniferous Limestones of Scotland, *Trochammina pusilla* is essentially a Permian species. It occurs abundantly in the Lower and Middle Magnesian Limestones of England, and in the Kupferschiefer, Zechstein proper, and Middle Zechstein of Germany. Its presence in Ireland, in the bed regarded as pertaining to the Upper Magnesian Limestone, has also been recorded, but it does not seem to have been observed elsewhere in the highest division of the Permian rocks.

Trochammina milioloides, Jones, Parker, and Kirkby. Pl. III, figs. 11—15.

Characters.—Test free, convoluted; oblong or broadly oval, compressed. Convolutions on one plane, few, broad, embracing. Aperture varying in form, corresponding to the transverse section of the tube, or only slightly constricted. Length 1/4 th inch (1.75 mm.).

The intermediate *Trochamminae*, to which the name *Tr. milioloides* has been assigned, bear the same sort of relation *Tr. pusilla* that the Biloculine and Triloculine Miliolæ bear to the Quinqueloculine and Spiroloculine. The name is put forward by its authors
for the "passage forms between *Tr. gordialis* and *Tr. incerta* in one direction and *Tr. pusilla* in the other." The figures (Pl. III, figs. 11—15) are reproduced, with the assistance of specimens kindly lent by Mr. Kirkby, from the drawings accompanying Messrs. Jones, Parker, and Kirkby's paper.

Distribution.—Permian only:—occurs with the allied *Trochammina* in the Lower and Middle Magnesian Limestones of the North of England.

Trochammina Robertsoni, nov. Pl. III, figs. 6, 7.

Characters.—Test free, oblong, compressed; composed of a spuriously septate tube reflexed or doubled on itself more or less regularly in a manner analogous to the Quinqueloculine *Miliola*. Aperture relatively large, rounded or arcuate. Test, exceedingly thin and delicate; texture very finely arenaceous. Length \(\frac{1}{2}^{\text{th}}\) inch (0·21 mm.).

For specimens of this exceedingly minute and delicate form I am indebted to my friend Mr. David Robertson, F.G.S., of Glasgow, who discovered it in some of the Carboniferous shales of the West of Scotland, and whose name therefore may very properly be associated with it. The specimens were at first assigned to *Tr. pusilla*, in the belief that their very small size, more regular structure, and delicate texture, were the result merely of different external conditions of life; but I have hitherto found no intermediate forms to justify this conclusion, and have therefore given to it a distinctive name. The resemblance of the specimens to minute *Quinqueloculinae* is remarkable, not merely in the general form and manner of growth, but in the constriction of the tubular body near the ends of the test (especially noticeable in the outermost convolution) which imparts an appearance almost precisely like the segmentation of a true *Miliola*. It is scarcely necessary to dwell on the superficial nature of this resemblance. The non-porcellaneous texture of the test is sufficient to separate the organism from its white-shelled isomorphs, whilst its cemented, finely arenaceous structure links it as clearly to the genus *Trochammina*.

Distribution.—*Trochammina Robertsoni* has only hitherto been found in beds of the Upper Carboniferous Limestone Group of Scotland. It may, however, have a wider range than we know of; for, from its very minute size and inconspicuous appearance, it may be easily overlooked in searching the dull-coloured material yielded by Carboniferous rocks.
TROCHAMMINA. — VALVULINA.

TROCHAMMINA FILUM (Schmid). Pl. III, fig. 16.

Characters.—Test free; consisting of a long tube of gradually increasing diameter, irregularly bent, and often partially coiled at its commencement. Aperture formed by the open unconstricted wider end of the tube.

There can be no doubt, as Messrs. Jones, Parker, and Kirkby have demonstrated (loc. cit.), that the little vermiform Permian fossil figured by Dr. E. E. Schmid is an uncoiled variety of Trochammina. It differs considerably from the crozier-shaped Carboniferous form, Tr. centrifuga, in its general contour and mode of growth. In its very earliest portion Trochammina filum, if not entirely uncoiled, is confused rather than helicoidal or spiral, and the linear portion of the test is irregularly twisted, and uneven in diameter. Its relationship seems to be rather with Trochammina pusilla than with the more regular Tr. incerta. The drawing, Pl. III, fig. 16, has been reproduced from Dr. Schmid’s figure.

Distribution.—Although in the examination of Carboniferous material, minute tubular organisms bearing a resemblance to this species often present themselves, I have never, except perhaps from a single habitat (near Skipton, Yorkshire), met specimens that could without cavil be assigned to it; nor have I any record of its occurrence in the Permian rocks beyond Dr. Schmid’s locality, the Zechstein of Selters in the Wetterau, Germany.

Genus, Valvulina, d’Orbigny.

Valvulina, d’Orbigny, Parker and Jones, Seguenza, Carpenter, Brady, Robertson.
Tetrataxis, Ehrenberg.
Textilaria (in part), Ehrenberg.
Rotalina (in part), Williamson, Parfitt.

General characters.—Test free or adherent, spiral; trochoid, turbinoid, plano-convex or (in Clavuline varieties) sub-cylindrical; chambers arranged in a more or less regular spire, sometimes terminating in a single rectilinear series. Aperture (normally) in the
umbilical angle on the inferior surface of the last chamber, more or less protected by a valvular tongue.

The structure and affinities of the genus *Valvulina* have been very completely worked out by my friends Messrs. Parker and Jones, and to their general results, as stated by Dr. Carpenter ("Introduction," p. 146), I have little to add. But hitherto no specimens proper to the genus have been recorded as such from any formation older than the Chalk, and the discovery of a number of new forms pertaining to a much earlier geological period brings with it considerable accession to our knowledge of the modifications which the type assumes.

British rhizopodists have generally accepted d'Orbigny's model of *Valvulina triangularis* (Modèle No. 25) as the best central type of the genus. This is a trifacial and triserial pyramid, somewhat rounded at the thick end and showing the characteristic aperture. Variations from the typical form run in two opposite lines—either the axis of the spire becomes shorter, giving rise to the trochoid and outspread varieties, in which the salient characters are only recognised in a sub-arenaceous texture, valvular aperture, or tendency to triserial arrangement of chambers, as in *Valvulina Austriaca* ('For. Fos. Vien.,' p. 181, pl. 11, figs. 7, 8)

1; or on the other hand, the spiral portion, retaining its original form, is supplemented by the growth of a line of chambers from its broad end, forming a cylindrical, uniserial column, with a pointed, triangular, triserial base, as in *Valvulina (Clavulina) Parisiensis* (Modèle No. 66). The latter modification finds its extreme expression in *Valvulina clavulus* (Modèle No. 2), in which the spiral end is entirely lost, and a rectilinear series of arenaceous segments with valvular mouth alone remains.

Wide as is the range of characters embraced in the above description, considerable latitude must still be allowed in its application to individuals or even to sets of specimens. I have long been convinced, from observations on recent specimens, especially from a series collected on the west coast of Scotland, that even the triserial habit of growth is not a character to be relied on, and it has been no matter of surprise to me to find that in the Carboniferous Limestone beds there exists a set of forms, more closely allied to *Valvulina* than to any other recognised genus, in which the number of chambers in each convolution is altogether variable, and of no significance as a generic peculiarity. Indeed, in the species about to be described, *four* is on the whole a more common serial number than *three*—a fact that seems to have been noticed by Ehrenberg and to have suggested the name *Tetrataxaxis* for the genus which he founded to embrace some of the varieties.

As to the position of the genus *Valvulina*, little need be added to what appears in Dr. Carpenter's work (loc. cit.). It is there referred to the sub-order "Imperforata"
rather than to the "Perforata" with the explanation that "it would perhaps be more correct to assign to it an independent position as the connecting link between the two." I am quite prepared to endorse this view and, as has been already stated in the Introduction, would further add to the same intermediate category the Carboniferous genus *Endothyra* and the Liassic type *Involutina*, although the relative positions of the three must be left an open question pending more accurate researches on the latter type. It is a well-ascertained fact that the freshly formed chambers in *Valvulina* sometimes appear hyaline and perforate, though subsequently they become thickened with arenaceous incrustation. Transparent sections show that in its best developed condition, notably in some of the large specimens of Tertiary age, the shell has throughout a perforate basis which has only become impervious by incrustation with extraneous matter; and the Carboniferous beds furnish at least one species, *V. bulloides*, with a not infrequently porous test. I have myself observed indications of the same thing in *Involutina* derived from Liassic clays; and, though the existence of a similar condition has not been demonstrated in *Endothyra*, it is possible that this may be owing to the obliterating effects of infiltration; at any rate it is premature to say that it does not exist in any of the various modifications of that type.

In its distribution *Valvulina* has hitherto been regarded chiefly in the light of a Cretaceous and early Tertiary type, at least it has not been supposed to extend further back in geological time than the Cretaceous epoch. It has still living representatives in some of the trochoid and plano-convex varieties, but, if we except the fine adherent examples of *V. conica*, recently obtained from deep Atlantic soundings, they for the most part bear the impress of a degenerate race.

So far, however, from being subject to such limitations in point of time, it will be gathered from subsequent pages that the genus furnished some of the most abundant and characteristic species that are found in the microzoic rocks of the Carboniferous period.

**Valvulina paleotrochus* (Ehrenberg) Pl. IV, figs. 1—4.

Tetrataxis conica, Id. Ibid., pl. xxxvii, § xi, figs. 7, 8.

Characters.—Test free or adherent, spiral, trochoid; composed of several convolutions, each of which consists of from three to four thin, oblique segments, all more or less visible on the exterior. Chambers simple, not sub-divided into chamberlets. Septation externally obscure, sometimes marked by slightly depressed or excavated lines. On the inferior surface the outline of the three or four chambers of the last convolution may sometimes, though rarely, be traced, each chamber with a projecting lip directed over a sort of umbilical vestibule. Diameter, $\frac{3}{4}$ inch (0.86 mm.).

So far as the British Carboniferous beds are concerned, *Valvulina paleotrochus* is one of the most striking and best differentiated species of Foraminifera. In shape and habit it bears some external resemblance to the recent *Valvulina conica*, but its shell-texture is less coarse and heterogeneous, owing to the constituent particles being entirely or almost entirely calcareous, whilst in the living species the test is commonly built up of siliceous sand and ferruginous cement. There is quite sufficient evidence that, like the analogous recent form, *V. paleotrochus* is normally parasitic, though the fossil specimens are seldom found actually in that condition. This is probably due in part to the unevenness of the base of the shell preventing very close adhesion to foreign bodies, or perhaps to the muddy condition of the sea-bottom offering but few facilities for adherent growth. Professor Ehrenberg gives two sets of figures under different names on the plate above quoted, but there can be no doubt that they refer to the same species; those in Section X from the Bellerophon-limestone of Witegra, on Lake Onega, Russia, have apparently been obtained free from the matrix, whilst the drawings in Section XI of the same plate, of specimens from the Mountain Limestone1 of Tula, Russia, represent transverse and perpendicular sections viewed by transmitted light.

Well-defined examples of *Valvulina paleotrochus* cannot be confounded with those of any other Carboniferous species, except it be *V. Youngi*. In external contour these two forms are exceedingly similar, but the characteristic sub-division of the segments of the latter into numerous chamberlets is generally indicated with more or less distinctness by superficial markings, and when this is not the case, a broken specimen, or still better a transparent section of the shell in a perpendicular direction, affords a ready means of diagnosis. *Valvulina paleotrochus* differs from *V. decurrens* and *V. plicata* in relative height and diameter, and in the mode of septation. Good specimens have a height nearly equal to the diameter of the shell at the base, and the spiral course of the chambers is much obscured by the extreme obliquity of the septation. On the other hand, *V. plicata* has but little more than half the relative height, the margin is rounded, and the septation almost Rotalian; whilst *V. decurrens* is still thinner, sometimes a mere scale, and its spiral growth is frequently rendered conspicuous by the partial or entire obliteration of septal lines and the consequent apparent absence of segmentation, as shown in Pl. III, fig. 18.

1 Described as "Hornstone of the Mountain Limestone with Spirifer mosquensis."
VALVULINA.

Distribution.—Of all the smaller Carboniferous Foraminifera Valvulina palaeotrochus is perhaps the commonest and most generally diffused—the only columns in the Carboniferous portion of the General Summary of distribution in which its presence is not indicated are those (but two in number) in which the quantity of material available for examination has been very limited. The species has not hitherto been found in beds of Permian or later age.

Valvulina palaeotrochus, var. compressa, Brady. Pl. IV, figs. 5, a, b.

Valvulina palaeotrochus, var. compressa, Brady, 1873. Mem. Geol. Survey Scotland; Expl. Sheet 23, pp. 61, 95, &c.

In a few localities there occur, associated with the typical Valvulina palaeotrochus, specimens presenting the same general characters, but having an elongated oval, instead of a circular, transverse section; in other words, having the form of a cone which might have been altered in shape by lateral compression. Such specimens are slightly smaller than those of the type; they are uneven, and one-sided at the base, more deeply excavated on the inferior surface at the umbilicus, and the sutural depressions marking the septa are somewhat stronger. There is no satisfactory evidence either in the external appearance or in the transverse section that the oval contour is really the effect of pressure. I have elsewhere¹ noted that, where change of shape in organisms of this sort has been produced by crushing, there is little difficulty in tracing the fact in the fracture or interruption of the spiral band at the ends of the longer diameter of the transverse section. In some habitats, where the circular, typical form is abundant, the oval variety is conspicuously absent, whilst in one or two localities they occur in almost equal proportions. There is no need to attribute more than subvarietal importance to these minor characters, but it may be well, till we know something more about them, to distinguish the compressed forms by a trivial name subordinate to V. palaeotrochus.

Distribution.—Found in a limited number of localities, in the higher and lower division of the Carboniferous Limestone in England, and in the Upper and Lower Carboniferous Limestone Groups of Scotland; not recorded elsewhere.

¹ 'Phil. Trans.,' 1869, p. 754, pl. lxxx, fig. 2. (In Loftusia.)
Valvulina Youngi, Brady. Pl. IV, figs. 6, 8, 9.

Characters.—Test free or adherent, obscurely spiral, trochoid; composed of several convolutions, of which the constituent chambers are all more or less visible on the exterior. Inferior surface concave, and more or less irregular. Chambers subdivided into one or more rows of chamberlets. Diameter, \(\frac{1}{4} \) inch (0·64 mm.) or more.

In external configuration Valvulina Youngi closely resembles \(V. \) paleotrochus, for, although the sub-division of the chamber-cavities by secondary septa may usually be detected by markings on the exterior of the test, these structures are not of a nature to affect its general appearance or contour. The two species are indeed very closely allied. A glance at the figures of their respective transverse and perpendicular sections (Pl. IV, figs. 3, 4, and 8, 9) will show wherein the difference really lies. In some of the Carboniferous Foraminifera yet to be described the shelly ingrowths appear as though they might have a tubular character; but in the present case there can be little doubt, judging from the transverse section (fig. 9), that they are true secondary septa, formed of more or less continuous plates of shell-substance dividing the chambers into chamberlets. It will be seen that the shell-wall and the primary septa are much thinner in \(V. \) Youngi than in the forms with simple chambers, the secondary growths therefore probably serve to give the necessary strength and solidity to the test. The same sort of provision, but on a much more extended plan, is to be observed in some of the more complex arenaceous types of Foraminifera, notably in Loftusia.

I have much pleasure in associating with so interesting a form the name of one of the earliest students of British Carboniferous microzoa, my friend Mr. John Young of Glasgow. It was in his collection from the rich Brockley shale, that I first made acquaintance with the species.

Distribution.—In England only noticed hitherto at one locality in the Lower Limestone Series, viz. Fallowlees, Northumberland. In Scotland at several localities pertaining to the Lower Carboniferous Limestone Group, but not in any other portion of the Series. In all cases very rare.
Valvulina Youngi, var. contraria, Brady. Pl. IV, figs. 7, a, b.

This form bears exactly the same relation to Valvulina Youngi that V. paleotrochus, var. compressa, bears to its type; that is to say, instead of being shaped like a cone with a circular base, its transverse section is of a long oval form. The chambers are subdivided into chamberlets just as in V. Youngi; in other respects the divergence from the parent form is in precisely the same characters as detailed in the description of V. compressa, and for similar reasons a varietal name has been provisionally assigned to it. Both the circular and oval forms of V. Youngi are rare, but the number of specimens of the latter variety is sometimes larger than that of the form which has been regarded by analogy as its type, differing in this respect from the corresponding modification of V. paleotrochus.

Distribution.—Much the same as that of Valvulina Youngi; indeed, no very great care has been used to keep the record of the two distinct.

Valvulina decurrens, Brady, Pl. III, figs. 17, 18.

Characters.—Test free or adherent, spiral, complanate; in the form of an outspread, much depressed cone, with circular base and thin, sharp, often irregular margin. Spiral band usually distinct; septation very obscure, partial, or often entirely abortive. Diameter, $\frac{1}{2}$ inch (about 1.0 mm.) or more.

The outspread forms, of which Valvulina decurrens is the representative, stand in somewhat the same relation to V. paleotrochus as that which Trochammina incerta bears to the regularly septate type of its own group. In neither genus can any hard line of demarcation be drawn between the successive "species."

Valvulina decurrens is a thin, complanate variety, often a mere scale-like disc, commonly much thinner than appears in fig. 17, b, which, owing to the upturned edge of the specimen, has a greater apparent solidity than is usually seen in characteristic examples. Sometimes its spiral structure is obscured, as in this figure, by confused, oblique septation,
but frequently, especially in weathered specimens, the whole course of the spiral band, unbroken and unsegmented, may be traced on the upper surface of the test, as in fig. 18.

The diameter of the shell is at least as great as that of *V. paleotrochus*, often greater; the height of the cone sometimes not more than $\frac{1}{10}$ inch (0.13 mm.) at the centre. The lower surface is usually flat and irregular, depending somewhat on the nature of the body to which it has been adherent during life. It is seldom possible to detect the aperture.

Distribution.—In the Lower Limestones of England, rare; in the Yoredale rocks much commoner. In Scotland found in the Calciferous Sandstones, and in the Lower and Upper Carboniferous Limestone Groups. It appears in the Lower Limestones of the North of Ireland and in the Upper Coal-measures of North America. Not a Permian species.

Valvulina plicata, *Brady*, Pl. IV, figs. 10, 11.

Characters.—Test free or adherent, spiral, quasi-rotalian consisting of about four convolutions; upper surface convex; lower surface flat or very slightly concave; margin rounded. Chambers numerous, more or less inflated, often irregular in size; septa oblique, curved, marked by slight depressions on the exterior. Diameter, $\frac{1}{10}$ inch (0.5 mm.) or less.

The term "spiral" as applied to the arrangement of the segments of any of the *Valvulinae* is not to be read in quite the same sense as in the higher groups of Foraminifera like the true Rotarians. Specimens of *Valvulina plicata* are occasionally met with, like Pl. IV, fig. 11, so neat and regular in appearance that they might easily be mistaken for small *Discorbinae*, but these are exceptional. Much more frequently it is impossible to trace any consecutive spiral series, and instead of a band of uniform and well-separated segments coiled regularly on itself, the effect is more like that of an oval tube twisted at intervals and so irregularly disposed that the order of the chambers may be a matter of doubt. Something of the obscurity may be attributable to the age of the fossils and the changes produced by the process of mineralization. In localities where the species is common there is generally a residuum of fairly marked examples, like figs. 10, *a—c*, possessing what may be looked upon as average characters, and upon such specimens its claim to a distinctive name is based.

Valvulina plicata is very closely related to *V. paleotrochus*, but its depressed, rounded, convex (rather than conical) shape, its plicate septation, smaller size and
general Rotalian aspect are sufficient for its identification. It is intermediate to *V. paleotrochus* and *V. bulboides*, the latter species having much fewer and more globular segments.

Distribution.—In England *Valvulina plicata* occurs, though very rarely, in both the Lower and Upper Carboniferous Limestones; in Scotland it is much more common in the Lower than in the Upper Group; and in the Fusulina-beds of Iowa, N. A., it is found associated with *V. bulboides*. It is not a Pernian species.

Valvulina bulboides, nov., Pl. IV, figs. 12—15.

Characters.—Test free (or adherent ?), oblong, rounded; composed of a few inflated segments, obscurely spiral in their arrangement. Superior surface, convex; inferior, flat or slightly concave, irregular, depressed at the umbilicus. Segments sub-globular, each succeeding one considerably larger than its predecessor. Diameter, $\frac{3}{8}$ to $\frac{1}{2}$ inch (0·3 to 0·5 mm.).

This little species, which is not uncommon in the Fusulina-limestones of North America, bears many points of similarity to the more modern type, *Globigerina*. Not only is the test made up in the same way of a few globose segments, somewhat rapidly increasing in size, but the excavation of the inferior surface often presents a striking resemblance to the umbilical vestibule of *Globigerina*. The superficial rugosity also bears some analogy to the sandy incrustation often observable in that genus. In point of fact the minute structure of the test of *Valvulina bulboides* is much more like that of some of the Tertiary members of the genus, than those of its own geological age. Notwithstanding its apparent arenaceous exterior—glistening in strong light with adherent white sand grains, the basis of the test is often distinctly perforate, as may be seen in the sections represented in Pl. IV, figs. 14, 15, a character that has not been satisfactorily demonstrated in any of its Carboniferous congeners. The aperture, which usually affords a generic feature of some importance, is scarcely ever discernible externally, owing to the infiltration of the test and the adhesion of particles of the matrix or of the body to which the organism may have been attached whilst living; but specimens are occasionally met with which show with sufficient precision its Valvuline peculiarities. The general structure of the test and the arrangement of its various parts may be readily made out from transparent sections.

Distribution.—Until comparatively recently I had supposed *Valvulina bulboides* to be confined to the Fusulina-beds of the Upper Coal-measures of North America, in which it is a common form, but I have since met with it sparingly in the Calcaire de Namur of Belgium and in the Fusulina-limestone of Miatschkovo, near Moscow. The Belgian
specimens are smaller than those from North America, but do not differ in any essential character, as may be seen by comparing the drawings.

Valvulina rudis, nov., Pl. III, figs. 19, 20.

Characters.—Test free or adherent, depressed, plano-convex. Exterior irregular, rough, giving no evidence of internal structure; margin thin. Interior doubtfully spiral; habit of growth obscured by the sub-division of the cavity into small irregular chamberlets. Diameter $\frac{1}{3}$ inch (0.75 mm.).

A less promising object for study than this obscure and rudimentary organism could not easily be found. Time after time it was taken in hand, as specimens presented themselves from various Carboniferous localities, with the conviction that it was an independent species, before any clue to its structure or affinity could be traced. Specimens were at length found of which it would be most correct to say that they were a little less devoid of character than those previously met with. These seem to furnish tolerably clear indication of relationship to the genus Valvulina, though representing the lowest condition of the type. They afford evidence of a sort of helicoid structure, the spiral band being very broad and thin, and so confused with shelly ingrowths, dividing the cavity into small, irregular, angular chamberlets, as to be traced with difficulty even under favorable conditions. True septa there are none, their place being apparently served by labyrinthic supplementary growths. The horizontal section commonly shows nothing but angular cavities bounded by subarenaceous walls; cavities and walls being alike devoid of regularity or order. In the dark coloured material, like the shales and earthy partings of our English Carboniferous beds, this species is easily passed over without recognition, but in the débris of the lighter coloured Fusulina-limestones it is more readily found.

Distribution.—In England Valvulina rudis has been met with in the Yoredale rocks only; in Scotland at two localities of the Lower Limestone Group. I also have specimens from the Fusulina-beds of Southern Iowa, N. A., and imperfect examples of what appears to be the same form from Miatschkovo in Russia.

Genus, Endothyra, Phillips.

Endothyra, Phillips, Seguenza, Brady.
Rotalia, Ehrenberg, Hall, d'Eichwald.
Nonionina (in part), d'Eichwald.
Involutina (in part), Brady.
ENDOXYRA.

General Characters.—Test free, spiral, rotaliform, more or less unsymmetrical bilaterally. Segments numerous. Texture subarenaceous, imperforate, though usually smooth externally. Aperture simple, situated on the inner margin of the terminal segment close to the periphery of the previous circle of chambers.

The Rotaliform group, to which may be referred a considerable proportion of the Foraminifera of the Carboniferous beds, forms collectively a very distinct and well marked series notwithstanding the external resemblance that many of its members bear to analogous forms amongst the true Rotaline, and the consequent difficulty in laying down morphological characters, couched in brief zoological terms, that would not apply with almost equal fitness to members of other genera. There is perhaps not one of the ten “species” about to be described to which a parallel or isomorph might not be found either amongst the Rotalinae or in the genus Nonionina, or sometimes in both. Still there are certain broad and important distinctions which are easily recognised. In general terms Endothyra is lower in the scale of organization than any true Rotaline, and though it might not be possible in every case to establish the relative position, say of two chance individuals, one belonging to each group, the distinction is none the less real and readily ascertained by the examination of a number of specimens.

The texture of the shell in Endothyra is to a greater or less degree arenaceous; that is to say, built up of minute particles of sand (necessarily in these limestone seas, of calcareous sand) embedded in a calcareous cement. The cement is not a dark ochreous material such as is commonly secreted by the rougher Trochamminae, nor are the particles of sand large and angular, and in excess of the cement, as in some other Lituoline genera; but the grains are minute and rounded and set in a homogeneous material, so that it is often only by the weathered or fractured surface that the built-up nature of the test is rendered apparent. Sometimes the fine calcareous cement is in large excess, giving rise to specimens with sutures thickened by bands of clear shell substance just as in the hyaline Foraminifer. In comparison with true Lituolae the test in Endothyra is generally very thin, and, so far as yet ascertained, never exhibits the tendency to fill up the cavities of the chambers with labyrinthic shelly growths from its inner surface.

On the other hand the investment seems to be normally, if not invariably, imperforate. It is impossible to speak with complete certainty, for the condition in which the specimens are found—infiltrated with calcareous material of the same composition as the test itself—is exceedingly unfavorable for the determination of minute characters. In point of fact it is very rarely that even the general pseudopodial aperture, which transparent sections show to be of considerable size, is visible externally, much less any minute perforations that may have existed in the shell-wall. Some of the more delicate varieties of the genus, such as E. ammonoides and E. subtilissima, not unfrequently have a dotted appearance, which at first sight looks very like shell-perforation; but the use of high magnifying powers and carefully adjusted light has always shown this to be due to a granular condition of the
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

Precisely the same effect, arising from the same cause, is to be observed in some Jurassic *Trochammina*.

Moreover, in *Endothyra* the septation is never double as in the higher Rotalines; that is to say, each succeeding chamber is a mere tent-like covering of a lobe of sarcode lying directly upon the preceding segment, and not a complete investment of the lobe by a shell-wall proper to itself, as in *Rotalia* (Carpenter's 'Introd. Foram.,' p. 212).

Whilst these characters are sufficient to separate *Endothyra* from the Rotaline types, and also from the genus *Nonionina*, with which the isomorphism is less constant, the close resemblance in form, and analogy in range of morphological variation, indicate a similarity in laws of growth and in conditions of existence that demand recognition in any natural system of classification. There can be little doubt, notwithstanding the imperforate and, to some extent, cemented or composite structure of the test in *Endothyra*, that the type has a much closer relationship with the Rotaline series than with rough arenaceous genera, such as *Lituola* and its near allies. As has been already stated, the systems of classification of the Foraminifera at present in use whether in this country or in Germany, however otherwise differing, agree in the adoption of "shell-texture" as the basis of the primary divisions, and groups like the one under discussion, which seem to be somewhat out of place whatever position may be assigned to them, serve to remind us how rarely any classification having a claim to be considered natural can be arranged in a single linear series, with its constituent groups separated by definable lines.

With this explanation a place may for the present be assigned to *Endothyra* amongst the arenaceous *Imperforata* of which it may be regarded as the highest of the minute and simple forms, its nearest allies therein being the rotaliform *Valvulinae* and the genus *Involutina*. Apart from schemes of classification, *Endothyra* may either be taken to represent a transition group intermediate to the spiral *Lituolida* and the true Rotalines, or, as there is much reason to think, it may represent a primitive type from which or through which, more than one series of Foraminifera, widely differentiated in their later developments, have had their origin.

So far as is known the genus *Endothyra* is confined to the Carboniferous Epoch, its nearest allies in rocks of later age being amongst the Rotaline genera.

1 By an oversight, of a sort unusual with the late Professor Phillips, this species, named after Mr. J. C. Bowman, appears as "Bowmanni." The slight correction made is, I believe, consistent with usage.
ENDOTHYRA.

Involuta lobata, Brady, 1871. (In Young and Armstrong's Catal.) Trans. Geol.
Endothyra Bowmani, Brady, 1873. Mem. Geol. Survey Scotland; Expl. Sheet 23,
pp. 63, 95, &c.

Characters,—Test depressed, usually consisting of two or three oblique convolutions,
of which but little more than the last is visible on the exterior. Margin thick, rounded,
lobulate; septal lines depressed. Segments inflated; variable in number, usually from
seven to ten in each whorl. Aperture single, simple. Diameter, $\frac{1}{15}$ to $\frac{1}{20}$ inch or more
(0·6 mm. to 1·3 mm.).

The figure given by Professor Phillips in his paper "On the Remains of Microscopic
Animals in the Rocks of Yorkshire," loc. cit., and the very partial description appended
to it, form, as already stated, the first record, of any palaeontological value, of the occurrence
of Foraminifera in the Carboniferous beds of England. The description amounts to very
little, and the figure which represents a nearly complete horizontal section is not given
with much detail. But it must be taken for what it is worth; and the comparison with
a series of sections of determined forms, made for the purpose of distinguishing the species
present in transparent slices of the harder limestone rocks, leaves little doubt that it is
referable to the particular modification described by myself some years ago, under the
name Involutina lobata. The horizontal section represented in Pl. V, fig. 4, corresponds
very closely with Professor Phillips's drawing.

I have recently received, through the kindness of Dr. Meek, of Washington, some
pieces of Sub-carboniferous Limestone from Southern Indiana containing the Rotalia
Baileyi of Professor James Hall, in point of fact almost entirely composed of that species.
Detailed examination has convinced me that, notwithstanding the somewhat stouter
proportions presented by the American specimens, they do not differ in any important
character from Endothyra Bowmani. I regret to have to sacrifice a specific term given
in memory of one whom all microscopists delight to honour, but under the circumstances
the name employed by Professor Phillips takes precedence of the others.

Endothyra Bowmani may be accepted as the best type of the genus. Not only was
it the first described and first named, but morphologically it occupies about a central
place in the range of modifications which the series presents: it is one of the largest in
point of size, as it is also one of the most widely distributed species of the entire group.

The Indiana limestone before alluded to is a very remarkable microzoic rock. In
appearance it is not unlike a whitish oolite, but almost every individual grain is a specimen
of this rotaliform foraminifer; there is indeed scarcely enough of the calcareous matrix
to cement the fossils permanently together. The mass crumbles down readily between
the fingers, and the disintegrated grains are clean enough for mounting without further
preparation. The average size of the American specimens is greater than any hitherto
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

found in British fossiliferous limestones, being one twentieth of an inch or more in long diameter when fully grown. The test is commonly thicker, and the septation in consequence often obscure; for the same reason they likewise present greater variation in external aspect and condition than those of less vigorous habit. British specimens, on the other hand, rarely exceed one thirty-fifth of an inch in diameter, and the chambers are rather more inflated and distinct. Their hue is darker, but this is due to the colour imparted by the shaley or marly material in which they are usually embedded.

The foregoing characters are sufficient to distinguish typical examples of Endothyra Bowmani, and the departures from them in minor particulars are easily recognised. Some of the thick-shelled examples have little or no depression at the umbilicus, and the margin of the test has no sharp constrictions. Others become bi-convex, have a rounded periphery and nearly even margin, the septa being only distinguished by slightly depressed lines, thus approaching E. globulus in general form; the latter, however, may always be recognised by its long narrow embracing chambers, and its more delicate proportions.

Distribution.—Of all the Endothyra, probably E. Bowmani is the most widely diffused. In the Lower and Upper Limestones of England and Wales, and in the Lower and Upper Carboniferous Limestone Groups of Scotland it is alike common, and in Ireland it is not wanting. Sections of the Fusulina-rocks of the Caucasus attest its presence; and, as has been above noted, one of the limestone beds of Sub-carboniferous age in Indiana is almost entirely composed of its remains.

Endothyra ammonoides, Brady. Pl. V, figs. 5, 6.

Characters.—Test free, discoidal, complanate or slightly biconcave, nearly symmetrical bilaterally; composed of several (8, 10, or more) convolutions of a spiral line of chambers in one plane. Convolutions narrow, increasing gradually in width; regular, slightly embracing. Segments very numerous, somewhat oblique. Septa, marked in young shells by slightly excavated lines, and in larger specimens by conspicuous, broad, more or less limbate bands. Periphery rounded. Surface granular. Aperture small, distinct. Diameter \(\frac{3}{10} \) inch (0·5 mm.).

A very pretty and distinct little species, not without some resemblance at first sight to the feeble recent varieties of the genus Operculina. In small specimens of Endothyra ammonoides the sutures are somewhat depressed, and the periphery is correspondingly constricted at each septum, but in larger ones the depressions are filled in by bands of
shell-substance, and the margin is even and regular. The surface of the test is finely granular. In some cases the granules are so minute and regular, as to be readily mistaken for perforations, but the thickness of the shell-wall and its compact arenaceous texture are readily seen in carefully prepared sections as represented in Plate V, fig. 6.

Distribution.—In England Endothyra ammonoides is comparatively rare, though less so in the Upper than in the Lower portions of the Carboniferous Limestone series. In Scotland it is tolerably common alike in the Lower and Upper Carboniferous Limestone Groups. Elsewhere I have no record of its occurrence.

In Mr. Charles Moore's gathering from Keld Head in Wensleydale it was singularly abundant, and the specimens very fine.

Endothyra globulus (d'Eichwald), Pl. V, figs. 7—9.

Nonionina globulus, d'Eichwald, 1860. Lethaea Rossica, vol. i, p. 350, Exp. 24, pl. xxii, figs. 17, a, b, c.

Characters.—Test discoidal, nearly symmetrical bilaterally, sometimes depressed at the umbilicus; consisting of several convolutions, each composed of ten or more segments, the last convolution only being visible. Periphery thick and rounded, but little if at all constricted at the sutures. Aperture, simple, crescentic. Diameter 1\(\frac{1}{10}\) inch (0.65 mm.).

It is very difficult to arrive at a satisfactory conclusion as to precisely what species of Foraminifera are intended to be represented by d'Eichwald's figures bearing the names *Nonionina globulus* and *Nonionina rotula* respectively. The drawings are given with a freshness and clearness characteristic of living specimens rather than of palaeozoic fossils, and it is probably to their somewhat diagrammatic handling that the uncertainty in identifying actual specimens may be attributed. But it can scarcely be wrong to assume that the even, unconstricted, and rounded periphery, together with the depressed discoidal form of the shell, are the characters intended to distinguish his *Nonionina globulus*. In

1 The specific term is so spelt in the 'Lethaea Rossica,' an obvious misprint, for which the necessary correction is now made.

2 I have entirely failed to identify *Nonionina rotula*, though all the Russian material sent to me by General von Helmerseen has been carefully searched for it. M. d'Eichwald states in a letter that his specimens of Carboniferous Foraminifera were very few in number, and have long since been given away and lost sight of, so that there is unfortunately now no means of verifying their characters. I have never seen anything amongst the Carboniferous species resembling the sutural orifices represented in his drawing, and the numerous apertures on the truncate face of the terminal segment are not suggestive of any affinity with *Nonionina*. I cannot help thinking (and the affinity to *Valvulina* remarked by the author would confirm the idea) that the specimen must have belonged to some species of *Endothyra* or of *Lituola*, in
all these particulars the British specimens coincide very well with the described Russian species. The only difference seems to be the presence usually of a somewhat larger number of segments in each convolution and the occasional filling up of the umbilical depression by the extension of the ends of the alar processes of the chambers and the thickening of the walls. There seems no reason for associating the species with the genus Nonionina especially in the absence of any other member of the group in the Carboniferous fauna. There is a very obvious resemblance between parallel modifications of the two genera, and Endothyra globulus may be regarded as the isomorph of Nonionina depressula, just as E. crassa is the isomorph of N. umbilicatula. It takes a place in the Endothyran series as the passage form between E. Bowmani and E. radiata, on the one hand, and E. crassa, on the other. The test though thin and smooth appears to be imperforate, and it sufficiently resembles the allied larger species to leave little doubt as to the similarity of its intimate structure, although it is next to impossible to lay down this character with entire certainty, so small are the specimens and so completely infiltrated with subcrystalline material. The cast of the interior of an unusually fine example, Pl. V, fig. 9, illustrates very clearly the form of the animal inhabiting the shell, and its segmentation.

There is no hard line of division between E. globulus and E. radiata, but they bear the same sort of relation to each other that we find amongst the modifications of many other helicoid types, e.g., Cristellaria and Polystomella, which present one set of varieties with thick rounded margin and another with sharp periphery.

Distribution.—The earliest appearance of Endothyra globulus is in the Calciferous Sandstone Series of Scotland at which age it is rare; but it is common in the Lower and Upper Carboniferous Limestone Groups of that country, and in the Lower and Upper Limestone beds of England. It occurs in the Calcaire de Namur of Belgium, and M. d’Eichwald’s specimens were found in a yellow clay from the Village of Sloboda in the Government of Toula, Russia.

which the sutural depressions have been bridged over at intervals, as occasionally observed in E. Bowmani. The anomalous apertures would be less noteworthy in an arenaceous or subarenaceous species.

I append M. d’Eichwald’s description in the hope that some future student may be more fortunate in his search for specimens than I have been.

"Nonionina rotula."

"Testa microscopica, subglobosa, subequilateralis, convexa, loculis 8 sensim magnitudine increscentibus, apertura semiunari, facie antica subtiliter punctata, suturis simplici pororum serie instructis."

"Hab. dans l’argile jaune carbonifère du gouvernement de Toula près du village de Sloboda."

"Le test, qui ressemble un peu à un Valculina, à $\frac{3}{4}$ de ligne de hauteur et $\frac{1}{2}$ ligne de largeur ; les 8 loges a dos arrondi sont plus larges que longues, les sutures sont finement pointillées ; l’ouverture de la dernière loge est semiunaire, étroite de la face antérieure, qui est au-dessus d’elle, est très finement pointillée.

"Le test est en général plus haut que large, par conséquent un peu comprimé des deux côtés ; il ressemble à l’Alveolina prisca, qui en difère par ses loges divisées intérieurement en cavités plus nombreuses" (Op. cit., vol. i, pp. 349, 350, Esp. 22, pl. xxii, figs. 18, a, b).
ENDOTHYRA.

Characters.—Test free, spiral, nautiloid, subglobular, slightly compressed laterally, nearly symmetrical; composed of several convolutions, of which the latest encloses all the earlier ones. Segments numerous, about ten in each convolution, broad, convex, embracing. Septa marked externally by slightly depressed lines. Texture distinctly arenaceous. Surface smooth except around the umbilicus. Diameter, \(\frac{1}{20}\) inch (1·2 mm.).

For the nearest isomorph of this species we must turn to the genus *Nonionina*, and in the small thick subglobular varieties, such as *N. umbilicatula* and *N. pompilioides*, we may find almost exact morphological parallels. *Endothyra crassa* is, however, a somewhat larger organism than the corresponding modification of the Nonionine type, and the test is unmistakeably arenaceous in its minute structure. The surface generally is very nearly smooth, but near the umbilicus it is more or less rugose and granular, sometimes studded with little tubercles. But few of the specimens are perfect, the terminal segment being often incomplete or broken. Amongst the *Endothyra* its nearest ally is *E. globulus*, but the smaller size and compressed form of the latter are sufficiently distinctive. The only Carboniferous Foraminifer likely to be confounded with *E. crassa* is *Lituola Bennieana*, a fossil of still larger dimensions, with fewer and more ventricose segments, and labyrinthic interior (see Pl. I, figs. 8—11). The three drawings, Pl. V, figs. 15—17, are from different individuals, all collected by Dr. Harvey B. Holl at Great Ormes Head.

Distribution.—*Endothyra crassa* is nowhere very common. In England and Wales it has only been found in the Lower Carboniferous Limestones; in Scotland only in the Lower Carboniferous Limestone Group. The finest set of specimens I have seen was collected from the Mount Lothian Quarry, Edinburghshire. In Belgium one or two specimens have been met with in the Calcaire de Visé. Similarly rare examples have been observed in the Fusulina-limestones of Russia.

\[\text{Id., 1873. Mem. Geol. Survey Scotland; Expl. Sheet 23, pp. 63, 95, &c.}\]
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

Characters.—Test nautilloid, compressed, laterally unsymmetrical; excavated at the umbilicus, thin and angular at the periphery; consisting of several convolutions, of which but little more than the latest is visible externally. Segments very numerous, narrow. Septation usually marked by lines of lighter colour rather than by superficial excavation. Margin sharp, but little constricted at the sutures. Surface smooth. Diameter, $\frac{3}{5}$ inch (0·5 mm.).

Adult specimens of this little nautilloid variety are sufficiently marked in their morphological characters to be easily distinguished from their congeners. The same can scarcely be said of small and immature examples, which it is often difficult to separate from those of *Endothyra globulus*. The relationship between the two forms is, in point of fact, exceedingly close; but the smaller size, the sharp periphery, and more, the numerous segments of *E. radiata*, are features of easy recognition in fully grown individuals. The peripheral view, Pl. V, fig. 11 b, does not show so thin and sharp a margin as many examples present, but it very well exhibits the unsymmetrical contour of the segments, which is a character of some importance.

Distribution.—In England *Endothyra radiata* occurs with some frequency in both the Lower and Upper Limestones; in Scotland it is common in the Lower, and very common in the Upper Carboniferous Limestone groups. In the Calcaire de Namur of Belgium obscure specimens probably belonging to the species have been noticed.

Endothyra macella, *Brady*. Pl. V, figs. 13, 14.

Characters.—Test free, spiral, much compressed or planate, oval or rounded, somewhat irregular; formed of a number of convolutions, of which the last only is visible on the exterior. Segments numerous, embracing, often depressed or concave rather than convex externally. Septation obscure, sometimes marked by excavated lines. Surface rough, irregular. Diameter, $\frac{1}{2}$ inch (1·3 mm.).

Under the name *Endothyra macella* have been grouped a number of large, thin outspread specimens, differing collectively from other members of the genus, but which, were it not for their dimensions, might almost be regarded as starved or otherwise emaciated individuals. Further observation may show that they represent merely a depauperated condition of some other species, but for the present there is nothing to demonstrate such a connection. The specimens have but few segments in each convolution, and the test is often so rough as to conceal the general structure
partially or entirely. Sometimes the surface of the chambers is nearly flat, and the sutures are marked by excavated lines; frequently the exterior of each segment is somewhat depressed or hollowed, and the septa are correspondingly raised. The edge-view, Pl. V, fig. 13 b, owing probably to superficial irregularity in the particular specimen, gives the idea of a much thicker contour and much greater solidity than the variety generally exhibits.

Distribution.—A rare form, whether in the number of localities or the frequency of the specimens. *Endothyra macella* has been found in the Yoredale rocks of Swaledale, and the Upper Mountain Limestone of the Bristol district; in the Lower Carboniferous Limestone Group of Scotland, and in the Castle Espie shale, Ireland.

Endothyra ornata, Brady. Pl. VI, figs. 1—4.

Characters.—Test free, nautiloid, biconvex, rounded, nearly symmetrical bilaterally; composed of five or six regular convolutions, the last of which is alone visible on the exterior. Segments numerous, 14 or more in the final whorl of fully grown individuals. Sutures, showing as slightly limbate lines in immature specimens, as stout, irregularly radiating costae in adults. Margin, sharp or carinate. Diameter, $\frac{1}{3}$ inch (0.8 mm.).

A handsome, strongly marked variety, the adult condition of which is well represented in figs. 1 a, b, of Plate VI, as a lenticular, carinate shell, with stout, curved, irregularly distributed, radiating costae. The strongly marked exogenous shelly growths impart to the test its most striking character, and obscure all external indications of its interior structure. In the young condition the septal lines are marked by slightly limbate bands radiating from the umbilicus and nearly regular, as in fig. 2 of the same plate. The horizontal section, from a medium-sized specimen, fig. 3, shows how regular the actual septation is, and how uniformly radial in its direction, not set obliquely after the usual manner of helicoid Foraminifera. With these features *Endothyra ornata* is easily distinguished from any other Carboniferous species. The two forms following next in order, *E. tenuis* and *E. obliqua*, have some characters in common with it, which will be considered in their right place, the former of them is probably only a varietal modification.

Distribution.—In England, rare in the Lower, less rare in the Upper Carboniferous Limestones; in Scotland hitherto found in beds belonging to the Lower Carboniferous Limestone Group only, and very rare therein; occurs also in Ireland, in the Castle Espie shale.
Endothyra ornata, var. tenuis, nov. Pl. VI, figs. 7, 8.

Characters.—Test free, nautiloid, irregular; oval or rounded, compressed, very thin; composed of several convolutions, of which the last only is visible externally. Septation obscure. Surface rough, broken up by very irregular and ill-defined costae. Periphery sharp, uneven. Diameter, $\frac{1}{3}$ inch (0.85 mm.).

There can be little doubt that the thin emaciated specimens found in some few localities, and generally in company with Endothyra ornata, represent merely a starved variety of that species, though they appear very distinct at first sight. The test is outspread and extremely thin, often only like a crumpled scale, and has no traceable septation; the margin, sharp, without any distinct carina, and usually very irregular. The spiral structure is assumed from analogy, rather than indicated by external marks. It is difficult to give an idea of the tenuity of the shell by a drawing, owing to the irregularity of the surface; and fig. 7 b is by no means successful. Under the microscope the edge-view often appears as a mere narrow jagged line.

Distribution.—The occurrence of Endothyra tenuis does not exactly correspond with that of its type E. ornata. It is rare alike in the Lower and Upper Limestone rocks of England; it has been found, though seldom, in the Calciferous Sandstone Series of Scotland, and in the Upper Carboniferous Limestone Group, but is wanting in Lower; in Ireland it occurs in the Castle Espie shale.

Endothyra obliqua, Brady. Pl. VI, figs. 5, 6.

Characters.—Test free, oblong or rounded, compressed; formed of several convolutions of a band of long arcuate segments, the axis being the long diameter of the test, and the convolutions presenting a long oval transverse section. Surface rough; with irregular ill-defined costae, more or less parallel to the axis, indicating the position of the septa. Aperture curved, situated near the middle of the inner edge of the long terminal segment. Diameter, $\frac{3}{4}$ inch (1.0 mm.).

Whether the assemblage of forms grouped under the name Endothyra obliqua owe their anomalous characters to external physical agencies or to inherited peculiarity is possibly still open to doubt. Their close relationship to Endothyra ornata does not admit of question; but, after the careful examination of a large number of specimens from various sources, I am unable to see how the characters in which they differ from
ENDOXYRA.

that species can be the result of pressure or other force acting from without, or indeed can be other than morphological variations in the ordinary sense. The trivial name originally given to specimens in Mr. Charles Moore's collection has therefore been retained, pending more satisfactory evidence as to the zoological value of their conspicuous characters. The salient peculiarity of *Endothyra obliqua* is the relation of the axis of the test to the spiral band of chambers. In the other *Endothyra* the axis of the spiral is the shortest diameter of the test; in the present species it is either directly or obliquely through the long diameter, and the spiral, instead of being round, is oval or compressed. A reference to the figures (Pl. VI, figs. 5, 6) will do more than many words to explain these structural features. A similar change in the relation of the axis to the body of the shell is observable in many other genera of Foraminifera, and something approaching a parallel to *Endothyra obliqua* may be found in such species as *Biloculina contraria*,\(^1\) or in the curious modification of *Textularia* named by d'Orbigny *Cuncolina pavonia*\(^2\).

Distribution.—Hitherto *Endothyra obliqua* has been observed in but few localities, though it is by no means an uncommon form where it does occur. In England it appears in both the Lower and Upper portions of the Carboniferous Limestone Series; in Scotland it seems limited to the Calcareous Sandstone or lowest division; in Ireland it is associated with allied species in the Castle Espie shale.

ENDOTHYRA SUBTILISSIMA, nov. Pl. VI, fig. 9.

Characters.—Test free, nautiloid, complanate, flat or only slightly convex; composed of a few regular convolutions rapidly increasing in width, the last almost entirely enclosing the earlier ones. Segments, about seven or eight in the outermost or visible whorl. Sutures and margin limbate. Periphery blunt, somewhat rounded. Surface granular, especially at the umbilicus. Diameter, \(\frac{1}{12}\) inch (0.34 mm.).

A very pretty and neatly made variety, with some *prima facie* likeness to the *Planorbulina* (*Planulina*) *Ariminensis* of d'Orbigny. As far as can be made out, however, from the single example I have had to work upon, the test is imperforate and the shell-texture precisely that of the smaller *Endothyra*, so that it may safely be regarded as another instance of the isomorphism of which almost every modification of the Endothyran type furnishes an example.

Distribution.—I know of only a single specimen, that from which the figures are drawn, which was found by Mr. Robertson in the rich Lower Carboniferous shale of Brockley, in Lanarkshire. It is not the only case in which my friend Mr. Robertson's quick eye has detected minute inconspicuous forms that have escaped the notice of other observers.

\(^1\) 'Foram. Foss. Vienne,' p. 266, pl. xvi, figs. 4—6. \(^2\) Ibid., p. 253, pl. xxi, figs. 50—52.
Genus—Nodosinella, gen. nov.

Dentalina (in part), Dawson, Brady.

General characters.—Test free; straight, arcuate, or crooked, never spiral; formed either of a tube constricted at intervals, or of a single series of segments variously combined. Test imperforate, texture finely arenaceous, though sometimes smooth externally. Aperture variable, simple or compound.

The uniserial Foraminifera which have been brought together to constitute the genus *Nodosinella* are a somewhat anomalous set of forms, and their association in one group has been adopted because it seemed open to fewer objections than any other course that could be suggested.

The Carboniferous uniserial species, as far as can be made out, are all imperforate; their texture is subarenaceous, and their septation rudimentary. These characters, if confirmed, are sufficient to separate them at once from the true *Nodosarinae*. The only other genus to which they could be supposed to belong is that termed by Prof. Reuss *Haplostiche*, the characters of which as laid down by its author might with a little modification be taken to include most of the Carboniferous specimens. But Prof. Reuss appears to accept the *Reophax scorpiurns* of de Montfort as the type of his genus, thereby indicating a set of Foraminifera essentially different in shell-structure from those now under consideration. De Montfort’s species is a characteristically rough organism, with a test built up of coarse siliceous sand-grains, fitted together with but little calcareous cement. It is quite true that all Prof. Reuss’s figures do not conform to this typical character, and that they show considerable range of modification, some being more, some less rough externally, and the texture of others is indeterminable from the drawings; but as in any case the name *Reophax* takes precedence of *Haplostiche*, whatever the zoological value assigned to either term, it is not needful to criticise the nomenclature of the Tertiary forms described under the latter appellation. That it may be found convenient to reintroduce de Montfort’s name for the rough, sandy, Nodosariform *Lituola* is possible; but the Carboniferous specimens have little in common with these, and it therefore becomes necessary to establish a genus for their reception.

Notwithstanding some range of variation in shell-structure, the relation of the new type *Nodosinella* to the genus *Reophax* (or *Haplostiche*) is almost precisely analogous to that which subsists between *Trochammina* and *Lituola* (proper) or *Haplophragmion*, the one characterised by a nearly smooth arenaceous shell, in which the calcareous cement is largely in excess of the constituent sand-grains, the other by a coarse test, externally rough, with the angular siliceous grains held together by the minimum of calcareous
NODOSINELLA.

103

material. Such, in general terms, are the relations of Nodosinella; the details may best be gathered from the specific descriptions.

In observations on the structure of the tests of Foraminifera it is needful to bear in mind the conditions under which the animals have lived. A creature of low organization and limited selective power, building its investment chiefly of extraneous materials, and secreting only the cement by which such materials are incorporated, forms a test which must necessarily vary with the nature of the sea-bottom on which it lives. During the Carboniferous Limestone period the sea-bottom was for the most part a fine calcareous mud, seldom containing any appreciable quantity of siliceous material in the form of sand, so that the composite tests of minute organisms must of necessity have been chiefly made up of calcareous particles incorporated by calcareous cement, and as a natural result the texture, which under other conditions would have been heterogeneous and granular, is compact and nearly homogeneous.

But notwithstanding the smooth exterior which these, in common with other Carboniferous subarenaceous forms, often possess, there is seldom much difficulty in proving their composite structure, and the absence of any trace of shell-perforation is a confirmatory fact of some importance. Although the tendency of calcareous infiltration is to obliterate minute markings, specimens would surely have been found, to judge by the Nodosaria of the Permian Magnesian Limestones, affording some evidence of shell-perforation if it existed; but, notwithstanding rigid examination, nothing of the sort has been detected in any of the species which have been assigned to this group. That these smooth subarenaceous Carboniferous forms were the precursors of the true Nodosaria of the Permian is an interesting and significant fact, whatever may be their zoological relationship.

Nodosinella digitata, nov. Pl. VII, figs. 1—3.

Characters.—Test elongate, tapering; straight or only slightly curved; cylindrical or somewhat compressed. Segments irregular, more or less inflated. Aperture single, simple. Length $\frac{3}{12}$ to $\frac{1}{2}$ inch (1·0 to 2·0 mm.).

The coarse imperforate test alone distinguishes this form from the Nodosaria, for the septation, though often partial and obscure, is sometimes at least as well defined as in Nod. (Dentalina) pauperata, and other similar varieties of the hyaline type. Figures 1, 2, and 3 of Plate VII are all from Permian specimens:—fig. 2 is a neatly septate, somewhat flattened variety, but connected by gradational links with the stouter, rounded type; whilst fig. 3, by its indistinct septation, approaches in character the group of Carboniferous forms which immediately follow it in the plate. As has been repeatedly stated, it is
impossible to mark off the successive terms of such series by hard lines. The difference in shell-structure between these specimens and the perforate, true *Nodosariae* of a neighbouring locality, but of somewhat later geological age, is readily demonstrated by microscopical sections.

Distribution.—Middle Permian Limestone of Tunstall Hill, Durham, rare. Specimens which may be assigned without much hesitation to the same species have been found in the Yoredale Rocks of Wensleydale, and near Skipton, Yorkshire, and somewhat doubtful examples in the Calcaire de Namur of Belgium.

Nodosinella cylindrica, *nov.* Pl. VII, figs. 4—7.

Characters.—Test cylindrical, nearly straight, sometimes irregular in outline. Segments numerous, cylindrical, but little inflated, usually short. Septation imperfect; sutures marked externally by slightly depressed lines. Interior of the chambers sometimes more or less labyrinthic. Aperture variable, simple or compound. Length \(\frac{3}{15} \text{ inch (1.0 mm.)} \).

A large and somewhat varied series of fossils, agreeing in their irregular, cylindrical contour and their subdivision into numerous short segments, with but little external constriction at the sutures, are included under the name *Nodosinella cylindrica*. Many of the specimens are nearly smooth superficially, others quite granular. The smooth varieties are often distinguished with difficulty from fragments of fossils of widely different zoological origin, such as the spines of *Echini*, or of molluscan Shells, or even portions of minute Encrinites. Thin microscopical sections often furnish the only means of determining the foraminiferal nature of such organisms.

The rough varieties, like Pl. VII, fig. 7, bear considerable resemblance to some of the recent large deep-sea types of Rhizopoda, especially to *Botellina*, the difference being chiefly in their comparatively minute size and the consequent finer texture in the labyrinthic lining of the test.

These slender elongate forms are seldom found quite entire in the Carboniferous beds, and it is necessary to speak with some caution of their minute characters. It is even possible that the group now described may contain representatives of two distinct species. With an insufficient range of specimens it is difficult to apportion a right value to each structural peculiarity, and at present there is not evidence to justify the division of a group which is tolerably uniform in external morphological features.

Distribution.—Hitherto *Nodosinella cylindrica* has only been recognised in the Carboniferous beds of England and Wales, viz. at Elfhills, and Grassington, in the Upper, and at Bangor, in the Lower division of the Series.
Nodosinella priscilla (*Dawson*). Pl. VII, figs. 8, 9.

Dentalina priscilla, Dawson, 1868. Acadian Geology, 2nd edit., p. 285, fig. 82.

Characters.—Test slender, moniliform, formed of several more or less elongated cells separated by only slight constrictions. Length (?). Diameter $\frac{1}{4}$ inch (0·64 mm.).

I think I cannot be wrong in associating this little fossil with the other imperforate uniserial Carboniferous Rhizopoda comprised in the group *Nodosinella.* Dr. Dawson states that he does “not feel at all certain as to its affinities, more especially as in the longitudinal section it does not show true septal plates, but only slight constrictions at the nodes.” I am indebted to Dr. Dawson for authentic specimens, and have made them the subject of careful examination. They fully confirm his view as to the extreme simplicity of the organism, which seems to be nothing more than a tube of indefinite length, constricted at intervals. The test is thicker than is usual in the true *Nodosarine,* and I am convinced that the minute structure is more akin to that of *Trochammina* than to any perforate type—the texture being, in fact, just that which *Trochammina* would assume on a sea-bottom of white calcareous mud. At the same time I do not doubt that there is a very close genetic relationship between these “*Protonodosarie,*” if one may call them so, and the analogous hyaline forus of later age. The septation of the sub-arenaceous Foraminifera differs both in extent and character from that of the hyaline types. In *Trochammina,* for instance, the animal may be monothalamous or segmented; in the latter case the subdivision is the result of the mere infolding or constriction of the shell-wall, or else of the investment of the individual chambers taking the form of tent-like coverings placed one over the other. An interesting illustration is furnished by Pl. VII, fig. 1 a, which represents a specimen of *Nodosinella digitata,* the earlier half of which has no septa whatever, whilst the remainder is divided into three segments. In *N. cylindrica* the septation is of the most variable and partial nature, and in *N. concinna* it is effected by the rapid narrowing of the investment, without the interposition of any septal plate.

I have found no specimens myself that can quite satisfactorily be assigned to *Nodosinella priscilla.* Fig. 10 represents one out of a number of similar slender forms, both Carboniferous and Permian, that in some degree resemble it; but the test is thicker and rougher, and the sutures more sharply defined. Such characters are more apparent in dark-coloured fossils like the subject of the drawing than in the constituent organisms of a pure white limestone; but this specimen is probably referrible to *N. digitata.*

Distribution.—“This little shell is very abundant on the surfaces of bed b, Windsor [Nova Scotia, N. A., White Carboniferous Limestone], but always in fragments.”—Dawson, loc. cit.
Nodosinella concinna, nov. Pl. VII, figs. 11—15.

Characters.—Test sub-cylindrical or compressed, composed of few (one to three) well defined, ventricose segments. Segments variable in contour, rounded; usually compressed laterally, perpendicularly, or obliquely. Aperture single, simple. Length $\frac{1}{25}$ inch (1·0 mm.).

This is perhaps the most striking and best differentiated species of the genus, but very limited in distribution. The test consists of a series of segments, without intervening septal plates, separated only by constrictions, and bearing a strong resemblance in shell-structure to the compact Trochanmina. A large number of the Foraminifera from the Yoredale Limestones of Swaledale, in which Nodosinella concinna most abounds, are very siliceous, and the Trochanmina-like appearance of the specimens extends even to those in which the original test has been entirely replaced by colloid silica.

The individuals vary a good deal in contour; perhaps the largest number have two segments, but many have three, and on the other hand some single segments occur which bear no sign of fracture or incompleteness; whether these represent different stages of growth or are alike perfect organisms, it is difficult to say.

Distribution.—In England Nodosinella concinna is confined, so far as is known, to the Yoredale Rocks of a very few localities. The Rev. W. Howchin has met with it in the Belstonburn limestone, its only recorded occurrence in Scotland.

Nodosinella lingulinoides, nov. Pl. VII, figs. 24, 25.

Characters.—Test elongate, tapering, compressed or complanate, straight or only slightly curved. Segments numerous, successively increasing in width; sutures but little excavated. Surface rough and irregular. Aperture variable. Length $\frac{1}{14}$ inch (1·5 mm.).

Certain large, rough, flat specimens, occurring rarely, and often imperfect in their later segments, may be conveniently distinguished under the name Nodosinella lingulinoides. Their exterior is rugged and irregular, and the interior of the chambers more or less labyrinthic. These characters are usually sufficient for their recognition.

A few individuals (figs. 22 and 23, for example) of smaller size and somewhat less compressed laterally were at first associated with the foregoing, but their internal structure seems to indicate that they belong rather to the genus Stacheia.
NODOSINELLA.—STACHEIA.

Distribution.—A rare species; it occurs in both the Lower and Upper Carboniferous Limestones of England, but in a very limited number of localities; in Ireland, in the Castle Espie shale; possibly also in the Calcaire de Namur of Belgium, but in the latter case the specimens are more than usually obscure and doubtful.

Genus—STACHEIA, gen. nov.

Webbina (in part), Brady.

General Characters.—Test (normally) adherent, composed either of numerous segments subdivided in their interior, or of an acervuline mass of chamberlets, sometimes arranged in layers, sometimes confused. Texture subarenaceous, imperforate.

From time to time during the examination of foraminiferous material from Carboniferous beds, minute parasitic structures, bearing some sort of resemblance to Rhizopod tests, attracted my attention, but the specimens were so ill-defined and wanting in character that they were of necessity laid aside. Amongst the Lanarkshire shales, for which I am indebted to Mr. R. Etheridge, jun., specimens at length appeared, chiefly adherent to fragments of Polyzoa or of Molluscan Shells, sufficiently well preserved and distinctive enough in their peculiarities to be assigned with confidence to the Foraminifera. These belonged for the most part to one species; and from its resemblance in shell-texture and habit to the adherent varieties of Trochammina known under the sub-generic term Webbina—differing chiefly from the hitherto described species in the irregular, heaped arrangement of its tent-like segments, it was assigned provisionally to that sub-type, and it appears in the Survey Memoir on the South Lanarkshire Coal-field (Expl. Sheet 23) under the name Webbina acervalis.

Thus encouraged, the search for parasitic forms was renewed, and the examination of minute Encrinites, spines, pieces of Zoophytes, and the like, eventually yielded, after setting aside a multitude of doubtful organisms, a number of interesting new forms,—my friends, Mr. John Young and Rev. W. Howchin, having materially assisted to this result. Closer microscopical examination showed that one or two species which had been previously supposed to be free-growing were essentially parasitic, and that one form, at least, which might have been passed by as pertaining to the Polyzoa was in fact an encrusting Polytrema-like Foraminifer. Whether future research may confirm the course that has been taken in treating these various forms as modifications of one polymorphic type, it is, of course, impossible to say; but they have so many characters in common, and
they form together so natural a series, that I have had but little hesitation in associating them provisionally under a single generic term, and have employed for their distinction the name of my friend and collaborateur Dr. Guido Stache, of Vienna.

A brief survey of the present extent of our knowledge of parasitic Foraminifera in general may help to a right appreciation of the characters of those now to be described; indeed, all the accessory assistance which can be obtained is needed for the proper reading of the obscure, often nearly obliterated, features of these very early fossil microzoa.

Amongst the porcellaneous Imperforata (family Miliolida of Carpenter, Parker, and Jones) the genera Dactylopora, Acicularia, and Nubecularia are, as a rule, parasitic. The two former are elongate, typically cylindrical forms with more or less regular plan of growth. Nubecularia, on the other hand, is a polymorphic type which was long regarded as a zoophyte from its encrusting habit. It occasionally shows a tendency to assume a spiral form, but in reality conforms to no definite plan. It spreads over the stones or shells upon which it grows, and adapts itself to their contour, sometimes producing a single layer of misshapen chambers, sometimes an irregular acervuline mass, and in these characters bears considerable resemblance to some of the Carboniferous specimens.

The genus Squamulina of Max Schultze is assigned by both Carpenter and Reuss to the porcellaneous Imperforata, but the researches of Mr. Carter indicate that its proper place may be in the arenaceous series. According to Max Schultze’s diagnosis it consists essentially of a plano-convex test adherent by its flat surface and with a single wide orifice on the convex side. In one species described by Mr. Carter the normal lenticular form is supplemented by a tall columnar growth. The shell is calcareous and opaque, and, in some of its varieties at least, largely built up of siliceous sand and sponge spicules.

Passing to the arenaceous Imperforata (family Lituolida), the genera Trochammina, Lituola, and Valvulina have each their parasitic representatives, and to these must be added the more recently described Polyphragma of von Reuss.

The typical Trochammina squamata is itself an outspread trochoid and probably adherent form, but the better known attached varieties are those of simpler character to which the sub-generic term Webbina is applied. They consist of simple, circular or oval, convex tests, subarenaceous in texture, but having a smooth surface, growing either singly or in irregular lines over the broad surface of stones or shells. These oval tent-like segments

1 Dr. Gümnel, in his memoir “Die sogenannten Nulliporen,” 2ter Theil, Abhandl. k. bayer. Akad. der W., II Cl., vol. xi, pt. 1, subdivides Dactylopora into five generic groups, Haplopora, Dactylopora, Thyropora, Gyropora, and Uteria, but this does not sufficiently affect our present purpose to need consideration here.

2 Prof. Reuss does not appear to have been conversant with the genus Nubecularia, for he associates it with Webbina and Placopilina, and places all together amongst the arenaceous Imperforata.

may be joined end to end more or less compactly, or may be connected by delicate tent-like stoloniferous tubes, single or branching; or each individual segment may represent an entire animal, the test sometimes having an aperture placed at the end of a tadpole-like tail, sometimes having no visible orifice. The adherent rougher Lithocole have received the sub-generic name Placopsilina, and they present much the same range of morphological variation as the adherent Trochammina, but they are always coarse and rough in shell-texture. The segments are also usually more closely packed, and in early growth they show a tendency to take a spiral arrangement. The trochoid and plano-convex species of Valculina appear to be all constructed for parasitic growth, but except the very conical forms they are seldom found actually adherent.

The genus Polyphragma1 represents typically an irregularly cylindrical, sub-arenaceous test, attached by one end, and growing in a curved or nearly erect line. It is composed of a single series of superimposed discoidal segments, the aperture taking the form of a number of perforations, arranged in more or less regular rings, on the convex face of the terminal chamber.

Turning now to the Perforata,—in the first division (family Lagenida), the genus Polymorphina alone presents adherent forms, and these appear as aberrant modifications of well known free varieties. In the Polymorphina concava of Williamson the adhesion is effected by the convex side of the shell, whilst in the "rooted" forms figured in the Monograph of the genus,2 the attachment is secured by the fistular shelly outgrowths.

In the family Globigerinida the most prominent parasitic types are Carpenteria, Planorbulina, and Polytrema, though the smaller Discorbinae and perhaps other plano-convex and trochoid Rotalians may occasionally be found growing upon foreign bodies.

Carpenteria is essentially an irregular encrusting Globigerina, its relationship at times attested by a disposition to assume a spiral arrangement in some of its segments; but more frequently consisting of a confused mass of chambers with large conspicuous perforations. The plano-convex and outspread Planorbulinae are probably normally parasitic, as well as a section of the sub-generic group Truncatulina; and even the allied genus Tinoporus possesses an adherent variety, noticed on a later page as an isomorph of one of the varieties of Stachaea.

"Of all Foraminifera" observes Dr. Carpenter (Introd. p. 235) "there is none so decidedly Zoophytic in its form and habit as Polytrema, for although it sometimes spreads itself on the surfaces of shells, corals, &c., it not unfrequently rises from those surfaces in an arborescent form, whilst sometimes its stalk instead of branching, swells into a globular protuberance, which leaves a strong resemblance in size and general aspect to the

1 Polyphragma cribrorum, Reuss, 1872, 'Das Elbthalalgebirge in Sachsen,' Iter Theil, p. 139, pl. xxxiii, figs. 8—10.
2 Brady, Parker, and Jones, 'Trans. Linn. Soc. Lond.,' vol. xxvii, pl. xlii, figs. 38, i, j.
globular form of *Tinoporusr*." But I must refer the reader to the description itself, which is too long to quote entire; much of it would apply almost equally to the more complex modifications of the genus *Stacheia*.

Lastly, amongst the *Nummulitinaida*, if the position assigned to it by Dr. Dawson, Dr. Carpenter, and others be considered as established, appears the largest of all adherent Rhizopods—that bone of contention, *Eozoon*.

We shall have but little need to refer more particularly to the various types which have been alluded to, except perhaps to *Nubecularia*, *Tinoporusr*, and *Polytrema*, but the bare enumeration will have served to show how important a section of Foraminifera the adherent varieties constitute.

In external form the specimens grouped under the generic name *Stacheia* present a wide range of variation. In *S. marginulitinaoides* the test closely resembles that of a more or less curved, tapering, few-chambered Nodosarine shell; and its originally parasitic condition is assumed, on grounds which will be stated in their proper place, rather than quite positively demonstrated. The closely allied *S. pupoides* consists also of a simple line of segments, varying in contour according to the nature of the object to which they are adherent—plano-convex and outspread if the surface be broad and flat, but concave on the under side and embracing if the object be narrow or cylindrical. On the other hand *S. fusiformis*, whilst quite circular in transverse section and tapering symmetrically, almost always retains the evidence of its parasitic habit. In the few-chambered acervuline variety (*S. acervalis*) the segments, instead of taking a uniserial line as in *S. pupoides*, are irregular in size and piled one upon another without apparent order. These four varieties all have relatively large chambers, divided in their interior by partial, secondary septa. In *Stacheia congesta* a somewhat different condition obtains; and instead of the large segments there appears a confused mass of minute chamberlets crowded round a foreign body, which is usually of long cylindrical shape. The general contour of the organism depends on the nature of the body round which it is built, but it is usually irregularly cylindrical or fusiform, sometimes constricted near the middle. The exterior is granular or nearly smooth, in places exhibiting the sort of reticulation that is noticeable on the smooth (non-radiate) varieties of *Tinoporusr*. Lastly, there are the wild-growing, encrusting modifications, named *S. polystrematoides*, somewhat resembling in habit the porcelainous type *Nubecularia*, but much more the normally perforate *Polytrema*, yet differing from both in the minute structure of the shelly investment.

There is much about the history of the genus *Stacheia* that is still far from satisfactorily made out. The specimens are as a rule of very small dimensions, and hitherto the number that have been found has been comparatively limited. Neither the size nor the number would have been any serious obstacle to the complete study of their structure, had they been in the recent state, but, taken in conjunction with age and the effect of fossilization in obliterating minute characters, the want of sufficient material and the
mechanical difficulties attendant on its condition preclude exhaustive treatment and necessitate a certain amount of reservation in respect to many points of detail.

The disposition of the parts and their relative significance are readily seen in the simpler forms by means of longitudinal sections. The segments arranged in linear series are either distinct and convex, circular in section, and partially embracing,—or else each succeeding segment almost entirely encloses those that have preceded it; in all cases the chamber cavities are subdivided by more or less regular secondary septa. The most careful examination fails to yield any trace of true shell-perforation; and, though in these simple varieties the surface of the test is nearly smooth, there can be little doubt that its texture is precisely similar to that of Trochantina and the allied arenaceous types in which the calcareous cement is largely in excess of the embedded sand-grains. In point of fact, the external appearance of the test closely resembles that of the fossil Valvulina of the same beds, and the analogy between the peculiar subdivision of the segments in the simpler varieties of Stacheia and the condition of the chambers in Valvulina Youngi is too striking to be overlooked.

This analogy is important in another point of view, for it suggests the solution of a question of considerable difficulty, namely, the position and character of the aperture. Were we dependent on Carboniferous specimens alone, it would not be easy to speak with any certainty of the aperture in the genus Valvulina; but by the aid of recent specimens its characters are easily determined, and we know that it takes the form of a curved slit on the under surface of the test, hidden by a tongue-like shelly projection. It is not possible to demonstrate the same condition in Stacheia, but there is quite sufficient evidence to justify the assumption that the nature and position of the orifice are not very widely different. In S. acervalis, for instance, it is pretty certainly on the under surface of the test, and it has even been noticed in the form of a produced neck (Planorbilina fashion) apparently springing from the lower side of the last segment. It would seem to follow, therefore, that in varieties like S. marginulinoides and S. fusiformis, in which the segments are ring-shaped and embracing, the pseudopodia would protrude at the end of the test around the sides of the body upon which the organism has grown, or, in case of the decay or disintegration of the columnar support, sarcode would occupy its place and the open end would form the general aperture. This would furnish a not improbable explanation, the only one I am able to suggest of the otherwise obscure characters of the simpler modifications of the type.

The interior structure of the two species which are formed of a large number of minute chambers is more obscure, and it is possible that further investigation may show reasons for placing them in a subordinate group by themselves. Of the two, Stacheia congesta is the more complex, and it will be best understood by reference to what is known of the compact varieties of the Rotaline genus Tinopus (especially T. levis, P. and J.), to which it bears considerable analogy, the fact of its growing in adherent masses
having no primary significance. The infiltrated condition of the specimens and consequent obliteration of structural details preclude the determination of anything beyond general characteristics; but the appearance of thin sections (Pl. IX, fig. 5), and the reticulation which may often be noticed over portions of the surface (fig. 1 &c.), alike indicate that the organism is composed of a multitude of minute closely packed chambers, though what is the nature of the communication between them I have been unable to determine.

The internal appearance of *S. polytrematoïdes* is much less difficult to understand. Not only are the specimens less altered by time and external agencies, but we have the guidance of two almost isomorphous recent types, whose structure is already well understood, namely, *Polytrema* and *Nubecularia*. Both these genera were classed by the earlier naturalists amongst "Zoophytes," and the knowledge of their real affinity and their position in the animal kingdom is due to the observations of a succession of naturalists, notably of Dujardin, Parker and Jones, Carpenter, and Max Schultze. Without the data furnished by their researches, the minute fossil organisms which have been grouped under the generic term *Stacheia* would naturally have fallen into the same category. Any doubt which I might at first have entertained on the ground of their somewhat ambiguous characters was dispelled by submitting the specimens to Dr. Carpenter and Prof. W. K. Parker, in the desire to have an entirely independent judgment upon them. After examination both these gentlemen unhesitatingly confirmed the views I had arrived at, adding somewhat by their remarks and comparisons to the elucidation of the structural characters. Curiosity, rather than necessity for further confirmation, led me to submit a considerable number of mountings of fossil parasitic microzoa to my friend, the Rev. T. Hincks, whose varied and minute knowledge of the Polyzoa and Hydrozoa seemed likely to cause him to approach the subject from the side of his own especial studies. It was therefore with much gratification that I watched his separation of the forms I had already set down as Foraminifera from others which he regarded as presumably Polyzoa.

That other adherent species will be found, as the friable calcareous shales of the Carboniferous beds come to be more closely searched, I have no doubt, and I can only hope they will be met with in condition more favourable for the determination of questions of minute structure than those which it has been my lot to examine.

Stacheia marginulinoides, nov. Pl. VII, figs. 16—21.

Characters. Test free (?) or adherent, uniserial; elongate, curved, subcylindrical, tapering; composed of a number of convex, more or less embracing, superimposed segments. Sutures depressed. Interior of the chambers cancellated, or subdivided into

1 And more recently Mr. Carter, see 'Postscript.'
chamberlets. Exterior, granular or nearly smooth. Aperture terminal. Length $\frac{1}{2}$ inch (0·9 mm.).

It may be a point still open to debate whether the uniserial subcylindrical forms which constitute the group now to be considered should be regarded as pertaining to the free moniliform type *Nodosinella* or to the essentially adherent *Stacheia*. The external morphology taken by itself would lead in the former direction, and the species was named at first in accordance, with that view; but as material accumulated, and with it the opportunity for more complete examination in respect to minute structure, the analogy to the adherent type became more and more apparent. But even in external conformation it is not difficult to trace a relationship between the apparently free species and the simpler parasitic forms. In *Stacheia pupoides* for instance (Pl. VIII, figs. 17—27), it often happens that when the test grows upon any body narrower than itself, it becomes more or less embracing, sometimes to such an extent that the ends of the segments nearly meet on the other side. It seemed possible, therefore, that the cylindrical *Marginulina*-like tests might have been originally parasitic, and have begun life with the support of a central foreign body, which had subsequently more or less completely disappeared either by disintegration or decomposition. The probability of this view was strengthened by collateral facts, especially by the discovery of a much smaller species, stouter in proportion to its length, and tapering symmetrically at both ends (*S. fusiformis*), having similar internal structure, but with the foreign body frequently remaining as an axial support. Supposing this explanation of the characters of *Stacheia marginulinoides* to be the true one, the aperture still remains to be accounted for. If, as it is safe to assume, the aperture of *S. pupoides*, like that of the trochoid *Valvulinae*, is on the under surface of the test, and *S. marginulinoides* represents typically a similar form with the segments completely embracing, it would follow that the aperture should be in the interior close to the central column; and in that case the pseudopodia would issue from the end of the test. The actual structure is precisely in accordance with such a supposition. Longitudinal sections show the central portions of the test confused in arrangement, the septa often broken and not continuous, especially at the narrow end. This cannot be gathered from any single specimen, for the sections must needs be axial, and the axis in *Stacheia marginulinoides* is scarcely ever straight; but it is not difficult to obtain clear evidence from a series of preparations. The external orifice being, in point of fact, the space left by the disappearance of the foreign body which formed the central support, it is manifestly not essential that it should be at the broad end of the test, and specimens actually occur (Pl. VII, fig. 18, a, b, is an example) in which there is no trace of aperture on the surface of the large terminal segment, whilst there is one at the narrow end; and again, as shown in fig. 20, specimens may be found which have two apertures, one at each end of the shell.

It will be readily seen that, notwithstanding their close exterior resemblance to the
free Nodosariform group, such specimens as those which have been described have a
much nearer relationship to the adherent forms which constitute the genus Stacheia.
There may at times be some difficulty in recognising them by external characters, but
the differences in minute structure supply a certain means of distinction.

Distribution.—In England Stacheia marginulinoides has been only found in the
higher beds of the Carboniferous Limestone, and it is by no means common. In
Scotland I have note of its occurrence in but two localities, both in the Lower Car-
boniferous Limestone Group.

Stacheia fusiformis, nov. Pl. VIII, figs. 12—16.

Characters.—Test adherent, short, stout, rounded, tapering at both ends; com-
posed of layers of chamberlets (or subdivided segments) more or less regularly and
symmetrically disposed round a thin columnar foreign body, each layer embracing
the previous one except at its peripheral margin. Test sometimes marked with slight
transverse constrictions over the sutural lines. Surface granular or nearly smooth.
Length \(\frac{1}{10} \) inch (0·6 mm.).

As usually found, growing round a straight axis, Stacheia fusiformis is a nearly sym-
metrical body, not unlike the Nodosarine genus Glandulina in general external aspect. It
is broader at the centre, and relatively shorter than other varieties of the type; circular in
transverse section, and almost devoid of those depressions, excavated lines, or other super-
ficial markings which in most Foraminifera serve to indicate to a greater or less extent the
structure of the interior. The chambers are very numerous, very thin and regular, and
are subdivided into minute chamberlets. The transverse secondary septa are thinner
than the proper chamber-wall, and apparently subordinate in importance to it, as shown
in Pl. VIII, fig. 16. In most of the sections that have been made, in which the
specimens are well enough preserved to exhibit anything of internal structure, the
remains of the central column can still be traced. Altogether Stacheia fusiformis is very
closely related to S. marginulinoides, and what has been written of the structural relations
of the latter species is in general terms true of the former.

Distribution.—In England Stacheia fusiformis is found in both the higher and lower
divisions of the Carboniferous Limestone Series; in Scotland it is present in both the
Lower and Upper Carboniferous Limestone Group, but the condition of the specimens
from the latter renders them difficult of recognition.
Stacheia pupoides, nov. Pl. VIII, figs. 17—27.

Characters.—Test adherent, elongate, tapering, uniserial; composed of a line of irregular convex segments, either lying flat on the surface of a foreign body, or embracing it to a greater or less extent. Segments inflated; interior cancelled, or subdivided more or less regularly. Surface granular or nearly smooth. Length $\frac{1}{15}$ inch (1·0 mm.).

Typically, *Stacheia pupoides* consists of a line of convex, tent-like, adherent chambers, each chamber embracing its predecessor somewhat, and subdivided in its interior. The external aspect of average specimens is well shown in Pl. VIII, figs. 20 and 22; their internal structure in figs. 26 and 27. Modifications of the normal form probably depend more on the nature of the body that serves for a support than on any inherent tendency of the animal. If the support be thin and slender, the shell embraces it more or less completely, and the margins of the chambers approximate on the opposite side, as in figs. 24, 25, &c. The central body may have been a fragment of organic matter which has been speedily decomposed; and in this case, which is not an unusual one, the margins of the segments may meet and form a nearly cylindrical test, the line of union being only indicated by a slightly excavated longitudinal suture, as in figs. 21 and 23.

Some two or three specimens have been found pertaining to this category, but with thin and compressed, rather than cylindrical, contour (fig. 17). These appear to have lost all trace of the central support, except, perhaps, just at the narrow end, and the interior of the test is filled up with cancelled shelly growths. Longitudinal sections exhibit the minuter structure very beautifully; they bear a high magnifying power with advantage (fig. 19), and show the communication between the chambers much more satisfactorily than any similar sections yet obtained from the commoner variety.

The general aperture of the test of *Stacheia pupoides* is probably analogous in its nature and position to that of *S. marginulinoide*; and, if what has been suggested with regard to that species be correct, it should be on the under or inner surface, near the margin of the terminal segment.

Distribution.—In England this species has been met with both in the higher and lower division of the Carboniferous Limestone rocks, in Scotland, in the Lower Limestone Group only; but in none of the six localities in which it has been found is it at all common.
Stacheia acervalis, *Brady*. Pl. IX, figs. 6—8.

Characters.—Test adherent, forming minute, rounded, or elongate patches, composed of comparatively few segments. Segments inflated, varying much in size in the same specimen, arranged in an acervuline or indefinite manner. Surface smooth. Length \(\frac{1}{10} \) inch (0·8 mm.).

So far as external form is concerned a more striking analogy could scarcely be found than that of the imperforate *Stacheia acervalis* and a few-chambered adherent variety of the genus *Tinoporus*¹ in the perforate series. It also bears considerable resemblance to some of the less regular *Planorbulinae*.

Stacheia acervalis was the first variety of the type that could be identified with any certainty as a Foraminifer; and its smooth imperforate test seemed to suggest an affinity to the adherent *Trochammina*, hence its association at that time with the sub-type *Webbina*. Further study, and the discovery of several allied species, necessitated the establishment of a distinct genus for its reception.

In external contour this species is very variable, both in the number and form of the segments, and their mode of combination. The cavities of the chambers are often subdivided in the same way as those of *S. marginulinoides* and *S. pupoides*; indeed, the relationship to the latter species is in all respects exceedingly close. The general aperture appears to be situated on the under surface of the test close to the margin, and in one or two examples has been noticed in the form of a slightly produced, bordered neck, as is sometimes seen in the genus *Planorbulina*.

Distribution.—In England *Stacheia acervalis* has only been met with in two localities, both pertaining to the Yoredale Series. In Scotland it occurs in both the Lower and Upper Carboniferous Limestone Groups, though it is much less rare in beds of the former than of the latter age.

¹ *Tinoporus lucidus*, *Brady* (‘Cat. Brit. Foram. Edin. Mus. Science and Art,’ 1870, p. 8, mentioned by name only), a form first noticed in dredgings from the West Coast of Scotland, and since repeatedly found by Mr. Robertson and the Rev. A. M. Norman, as well as by myself. It is a delicate *Planorbulina*-like variety, sometimes commencing growth with tolerable regularity, but afterwards becoming acervuline, or else spreading into superficial patches of considerable size.
Stacheia congesta, nov. Pl. IX, figs. 1—5.

Characters.—Test adherent, forming minute, elongate, subcylindrical, rounded, or fusiform masses clustered around foreign bodies, preferring those of slender columnar shape. Chambers very numerous; irregular in shape, closely packed, confused in arrangement; the boundary-walls of those composing the superficial layer sometimes indicated by the areolation of portions of the exterior of the test. Surface otherwise granular or nearly smooth. Length $\frac{1}{30}$ to $\frac{1}{15}$ inch (0.7 to 1.5 mm.).

This species bears considerable resemblance to the smooth variety of the Rotalian genus Tinoporos (T. levis, P. and J.), not only in general external appearance and occasional superficial areolation, but also in the mode of aggregation of its constituent chamberlets, the primâ facie difference being that the one is, the other is not, a parasitic form. Not that the adherent condition is unknown in the genus Tinoporos: a variety has already been alluded to which bears the same sort of resemblance to Stacheia acervalis that Tinoporos levis bears to Stacheia congesta. Such analogies are not merely interesting, but are of considerable value as collateral evidence in an order of animals characterised by the tendency to isomorphism amongst its constituent groups.

The drawings, Pl. IX, figs. 1—4, are good representations of average examples of this obscure organism; fig. 5 is its longitudinal section, as seen by transmitted light; the magnifying power employed is the same throughout, 50 diameters. The further enlargement by means of higher powers brings out but little additional detail, owing partly to the granular texture of the test and partly to the obliterating effect of the mineral infiltration. Specimens are occasionally met with having prominences like the arborescent growths of Stacheia polytrematoïdes, but these appear to have taken their form from that of the foreign body upon which the shell has grown.

Distribution.—Specimens of Stacheia congesta have been found in a single locality in the lower division of the English Carboniferous Limestones, but in the higher portion of the series it is much less rare. In Scotland, on the contrary, it has been observed in two or three localities of the Lower Limestone Group, whilst its presence in later beds has only been clearly established in a single habitat.
Stacheia polytrematoiides, nov. Pl. IX, figs. 10—13.

Characters.—Test adherent, irregular in growth and outline; composed of a multitude of minute chambers, either confused or arranged in more or less regular layers; forming encrusting masses of uneven thickness, spreading over the surface of foreign bodies, sometimes swelling into mammillate or arborescent protuberances which are pierced at the top with large orifices. Surface areolated, blistered or granular. Dimensions indefinite; in patches usually less than \(\frac{1}{4} \) inch (6·0 mm.) in diameter.

The relation of Stacheia polytrematoiides to the other members of the genus may be seen by a comparison of two specimens such as those represented by figs. 8 and 9, Pl. IX, the former being taken from a good example of S. acervalis, the latter from a specimen, somewhat similarly circumstanced, of S. polytrematoiides. Notwithstanding a certain resemblance in external contour, considerable difference exists between the two; for, whilst S. acervalis has a few, large, distinct chambers, which are subdivided into chamberlets, S. polytrematoiides consists of a wild-growing mass of small chambers sometimes disposed in layers, but more frequently arranged in no particular order, spreading indefinitely over the surface of any object to which it has attached itself. In other words the distinction rests between the large-chambered, Planorbulina-like habit of the one form, and the small-chambered, confused, Polytrema-like growth of the other. Morphologically speaking the analogy that exists between Stacheia polytrematoiides and corresponding organisms in the porcellanous and perforate series, namely, Nubecularia and Polytrema, is very striking; but, rather than occupy space with the repetition of details, I would refer the student, as I have already done on a former page, to Dr. Carpenter’s excellent account of these types,\(^1\) for the explanation of many of the singular and apparently anomalous features of the present species. It has been found very difficult to obtain transparent sections of the Carboniferous organism, showing its internal structure with any degree of distinctness, but Mr. Hollick’s drawing, from a fairly good preparation, Pl. IX, fig. 13, is sufficient to demonstrate that the analogy to Polytrema is borne out in interior arrangement as well as in external configuration. I have not been able in any case to detect true shell-perforation, that is to say, such tubulation of the shell-wall as is characteristic of the hyaline Foraminifera. Some specimens at least show a more or less composite structure of the test, with embedded sand-grains of appreciable size, but in the majority of cases the investment is nearly smooth, and its minute structure is partly assumed from analogy to closely allied forms in which the arenaceous character is more distinctly traceable.

Distribution.—In England and Scotlanda like, Stacheia polytrematoiides has been

\(^1\) ‘Introd. Foram.,’ pp. 71 and 235, et seq.
obtained from both the Lower and Upper Groups of Carboniferous Limestones, though it differs much in its relative frequency in the older and newer beds of the two countries, as will be seen by reference to the Tables of Distribution. It was first noticed by Mr. John Young in the rich Lower Carboniferous shale of Hairmyres in Lanarkshire.

Sub-order, Perforata.

Family, Lagenida, Carpenter.

Genus—Lagena, Walker and Jacob.

Serpula (Lagena), Walker and Jacob.
Oolina, d'Orbigny, Reuss, Bronn, Egger, Terquem, Bornemann, Costa, Karrer.
Lagena, Williamson, Morris, Parker and Jones, Carpenter, Reuss, Brady, Stache, Gümbel, Karrer, Robertson, Kühler, Vanden Broeck, Blake, Wright, &c.
Serpula, Vermiculum, Lagenula, Miliola, Cenchridium, Entosolenia, Oulina, Ovolina, Apiopterina, Fissurina, Amphorina, Amygdalina, Prialina, Tetragonalina, Trigonulina, Obliquina, auctorum.

General Characters.—Shell free, consisting of a single, undivided chamber; sub-spherical, oval, pyriform, oblong, or fusiform; sometimes compressed laterally on two, three, or four sides. Aperture usually single; in distomatous forms the two orifices are at the opposite ends of the shell. Texture hyaline.

To the Rev. W. Howchin, of Morpeth, we are indebted for the discovery of the genus Lagena in beds of Carboniferous age, indeed, almost all the specimens yet obtained have been from material collected by that gentleman, and chiefly from two Northumbrian localities.

The specimens are generally more or less granular superficially, and are referrible to three tolerably distinct varieties, one of which has no superficial ornamentation, another is costato-punctate, and the third costate over its lower half with a raised, more or less conspicuous, transverse line, in which the costae terminate, near the widest portion of the shell.
The genus *Lagena* has already been traced back by the researches of Reuss, Terquem, Blake, Wright, and others to the Cretaceous, Jurassic, and even to the Liassic age, but the examples now under consideration carry its history into a much more remote geological epoch. It is not needful in this place to enter into minute details concerning the nomenclature of the genus or its distribution; the reader, interested in such matters, may refer to the 'Monograph of the Crag Foraminifera' (pp. 28—31), where they are entered upon with some exactness, the particulars furnished representing the state and knowledge up to the date of their publication. The Carboniferous representatives of the type differ from the more recent species chiefly in their thicker and somewhat granular shells, and it is not by any means certain that they may not bear as close a relationship to the subarenaceous genus *Nodosinella* as the later species do to the hyaline type *Nodosaria*.

Lagena Parkeriana, nov. Pl. VIII, figs. 1—5.

Characters.—Shell globular, ovate, or pyriform; neck rarely much produced, aperture ecosolenian. Surface variable, more or less granular or even studded with minute irregular tubercles. Length \(\frac{1}{10} \) inch (0·4 mm.).

In general contour *Lagena Parkeriana* presents a range of variation from that of *Lagena globosa*, Montagu, in its short globular modifications, to *L. levis*, Montagu, in its pyriform or flask-shaped varieties; but it is not ecosolenian like the former and seldom shows the regular tapering neck of the latter species. Its essential difference from both consists in its thick shell and granular, roughish, or even irregularly tuberculate surface.

I obtained one or two specimens of this form some years ago from the *Saccammina* bed at Elfhills, but it was not until the Rev. W. Howchin's fortunate discovery of *Lagena* in the Fourstones Quarry that their relationship could be stated with any degree of certainty.

The naming of a Foraminifer after my friend W. K. Parker, F.R.S., is an act that needs neither apology nor explanation.

Distribution.—In the Four-fathom Limestone (Elfhills) and in the shale overlaying the Great Limestone (Fourstones)—Northumberland. Its presence in the Scotch beds has not yet been satisfactorily established, except in a single locality, where it is associated with *L. Howchiniana*.
LAGENA.

LAGENA HOWCHINIANA, nov. Pl. X, figs. 1—5.

Characters.—Shell sub-spherical, oval, or flask-shaped, often unsymmetrical; with more or less strongly marked parallel longitudinal costæ, along the top of which at regular intervals are well-defined perforations. Neck short, often irregular. Orifice wide. Length \(\frac{1}{60}\) to \(\frac{1}{20}\) inch. (0.4 to 0.5 mm.).

As the most striking of the Carboniferous Lagena, it is manifestly proper, for reasons I have already stated, that this species should be named after the Rev. W. Howchin. It is a well-marked form, not likely to be mistaken for any other hitherto described. The costæ do not appear to be exogenous ribs as in many similarly ornamented Foraminifera, but are formed by crenulations of the shell-wall; and the ridge of each of the crenulations is pierced by a series of small orifices placed at regular intervals. The perforations are sometimes obscured by infiltration, but their existence can nearly always be detected. The test itself is thicker than is commonly seen in the Lagena, and its surface is nearly always somewhat rough or granular. These characters, in addition to its frequent irregularity of growth, render it in so far an anomalous member of the genus. Double specimens, such as fig. 4, are occasionally found, but similar monstrosities occur in many other species, both recent and fossil.

Distribution.—Found in the Bottom Limestone at Ridsdale, and in the shale overlying the Great Limestone at Fourstones—both Northumbrian localities. Its occurrence in the Scottish Carboniferous Limestones is as yet noted in only a single position high up in the series.

LAGENA LEBOURIANA, nov. Pl. VIII, fig. 6.

Characters.—Shell sub-spherical or pyriform; having a surface ornamentation consisting of a few, usually four or five, regular costæ, proceeding from the base to the widest portion (about the middle) of the shell, where they are merged in a more or less distinctly raised transverse ring. Length \(\frac{1}{10}\) inch (0.25 mm.).

A singular form, quite distinct from L. semistriata of Williamson. The costæ, commonly only four in number and equidistant, impart a somewhat quadrangular aspect to many specimens. Sometimes there is a well-marked, raised, transverse ring, similar in thickness to the costæ, round the widest portion of the test, and in these cases the ends of the costæ are united to it, thus dividing the surface of the lower half of the shell into four
or more triangular figures. Where the ring is absent or can only be partially traced, the ends of the costae often show considerable lateral thickening, indicating the line of the abortive transverse girdle. \textit{Lagena Lebouriana} is the smallest of the Carboniferous species of the genus, and exhibits the same slight roughening of the surface that has been remarked in its fellows. Its modifications merit fuller illustration than the single drawing which is given in Plate X, but the plate was already partly on the stone before the specimens were discovered, and room could only be made for one additional figure.

It is with much pleasure that I associate so interesting a form with the name of my friend, Mr. G. A. Lebour, F. G. S., to whose observations we owe much of our accurate knowledge of the geology of the locality in which the species was found, as also of many other portions of Northumberland.

\textit{Distribution}.—In the shale overlying the Great Limestone, Fourstones Quarry, Northumberland.

\textit{Genus—Nodosarina, Parker and Jones.}

\textit{Nodosaria, Glandulina, Lingulina, Frondicularia, Flabellina, Dentalina, Vaginulina, Rimulina, Marginulina, Cristellaria, Robulina, Planularia, \&c., auctorum.}

\textit{General Characters}.—Shell hyaline, tubuliferous, either straight, arcuate, crozier-shaped, or disco-spiral; composed of several segments arranged in one series. Pseudopodial orifice terminal and single, either central or excentric. Surface smooth, or ornamented with straight raised parallel lines, either continuous or interrupted, sometimes represented by spines or granules, sometimes reduced to one or more keels.

Foraminiferata pertaining to the generic type \textit{Nodosarina} are less common in deposits of Carboniferous and Permian age than in those of almost any subsequent geological epoch, and they also exhibit a less extensive range of morphological characters; so that any lengthy exposition of the relation of the various quasi-generic groups above enumerated, which, with many others, have come to be included under this one generic term, would be manifestly out of place. The subject has been treated with much care in the ‘Monograph of the Foraminifera of the Crag’ (pp. 46 et seq.), and nothing that has accrued from continued observations has tended to disturb the conclusions therein laid down.\footnote{Except, perhaps, in connection with the genus Ellipsoidina, which was then included with the \textit{Nodosarinae}. It is difficult to speak positively about so very rare a type, nor does it affect the general truth of the views in question, but I am convinced from recent observations that \textit{Ellipsoidina} has its nearest ally in \textit{Chilostomella}, and that \textit{Chilostomella} is more closely related to \textit{Polymorphina} than has been hitherto supposed.} It is sufficient for our present purpose to say that
notwithstanding the great variety, not only in minor characters but in general contour, which exists amongst the specimens included in this comprehensive genus, they form, when arranged, a complete and unbroken series. From end to end no link in the chain is wanting, there is no disconnected point at which a sharp line can be drawn to indicate a true specific, much less a true generic boundary. The characters which have been chosen and accepted by a long succession of observers as the basis of an artificial subdivision, though as good as any available under the circumstances, leave the inevitable hosts of "intermediates" unprovided for. It has been said with perfect truth "the group is one in which it is easy enough to establish generic differences when only a few strongly marked types are contrasted, whilst it becomes more and more difficult to maintain these in proportion to the number of individuals compared, until at last the difficulty amounts to an impossibility."

To this close connection of a long succession of slight modifications exhibited by individual specimens we owe the prodigious list of needless "specific" names which have been employed for members of the genus; a category of useless terms which I suspect has no parallel in the domain of systematic zoology.

Subgenus—Nodosaria, Lamarck.

Nautilus, Orthoceras, Orthocera, auctorum.

Nodosaria, Lamarck, Defrance, d'Orbigny, Ehrenberg, Geinitz, Reuss, McCoy, d'Eichwald, Richter, Parker and Jones, Williamson, Carpenter, Karrer, Brady, Stache, Schmid, &c.

Characters.—Shell cylindrical, composed of several segments, arranged in a straight series; either smooth, or ornamented with ribs, granules, or spines; septal lines more or less depressed, making constrictions at right angles to the long axis of the shell. Pseudopodial aperture, simple, central, often pouting.

The artificial nature of the generally accepted subdivision of the Nodosarinae could scarcely be more strikingly shown than in a series of Permian specimens. Take an average lot of examples just as they occur in the magnesian limestone débris;—they consist individually of more or less elliptical segments joined together end to end, the segments united by stoloniferous tubes; no two specimens are alike, they differ in the direction of growth, in the number of chambers, the relative size of succeeding chambers, the degree of convexity of the segments, and in many other quite non-essential particulars yielding characters of not even sub-varietal importance. Systematists begin by assigning the straight individuals to one genus, the bent ones to another. It seems absurd to say so, but it is often exceedingly difficult to determine, under which group of even so elementary

1 Carpenter, 'Introduction,' p. 159.
a classification, many of the specimens should be placed. It is necessary, therefore, to state that the subordinate term *Nodosaria* is here used in its generally understood sense; that is, just to include the straight or approximately straight forms.

Nodosaria radicula (Linne). Pl. X, figs. 6—16 (including varieties).

duplicans (?), Richter, 1861. In Geinitz’s Dyas, Heft i, p. 120, pl. xx, fig. 26.

subacicula (?), *Id*. Ibid., p. 121, pl. xx, fig. 27.

Geinitzi, Reuss. Ibid., p. 121, pl. xx, fig. 28.

Kingi, *Id*. Ibid., p. 121, pl. xx, fig. 29.

Kirkbyi, Richter. Ibid., p. 121, pl. xx, fig. 30.

Jonesi, *Id*. Ibid., p. 121, pl. xx, fig. 31.

radicula, *Parker, Jones, and Brady*, 1865. Ann. and Mat. Nat. Hist., ser. iii, vol. xvi, p. 18, pl. i, fig. 27.

ovalis, *Id*. Ibid., p. 588, pl. vi, figs. 50, 51.

citriformis, *Id*. Ibid., p. 586, pl. vi, figs. 52, 53.

sp., *Id*. Ibid., p. 586, pl. vi, fig. 54.

Kirkbyi, *Id*. Ibid., p. 586, pl. vi, fig. 55.

Characters.—Shell cylindrical, tapering, composed of several subglobose segments united in a straight line. Surface smooth. Length, \(\frac{1}{20}\) inch (1·25 mm.), more or less.
A good typical specimen of *Nodosaria radicula* has four or more segments, rarely as many as eight; the segments are sub-globular in form, regularly but only slightly increasing in size, from the earliest to the last formed, and quite symmetrically joined end to end. But, as might be expected, so very simple an organism is subject to almost as many trifling variations as there are individual specimens, and these have been abundantly made use of by systematists as the foundation of a multitude of "specific" names. Putting aside the curved forms, the result of mere lateral inequality in the setting on of the chambers, which have been supposed to constitute a distinct genus, it may be worth while just to enumerate some of the modifications of the typical, straight shell that have been thought worthy of specific separation. Thus d'Orbigny figures a specimen from the White Chalk of the Paris basin, with only three chambers, and having a band of shell-substance thickening the sutral lines, under the name *Nodosaria limbata* ('Mém. Soc. Géol. Fr.', vol. iv, pl. 1, fig. 1). Roemer gives one of the short somewhat conical modifications, which stand as intermediate to *Nodosaria* and *Glandulina*, the chambers less globular than in the type and the sutures correspondingly less constricted, with the name *N. humilis* ('Verstein. Norddeutsch. Kreid.', pl. 15, fig. 6). Prof. Reuss in his paper on the Chalk of Westphalia ('Sitzungsb. Akad. Wissensch. Wien,' vol. xi, pl. 1) has drawings of two excellent typical specimens, the one as *Nodosaria lepida* (fig. 2); the other, the first chamber of which is slightly mucronate, as *N. concinna* (fig. 3). The same plate has a figure of a specimen with a larger number of chambers and an excentric aperture named *Dentalina acuminata* (fig. 7), and one differing only in the oblique mouth, as *D. subrecta* (fig. 10). It is to be noticed that these latter two, named *Dentalina*, are as straight in contour as those assigned to the genus *Nodosaria*, and the segments, except the terminal one, are in every respect similar, and similarly disposed. An analogous set of figures is given by Neugeboren ('Denkschr. k. Akad. Wiss. Wien,' vol. xii, pl. 1), under the names *Glandulina elegans* (fig. 5), *Gl. Reussi* (fig. 6), *Nodosaria Beyrichi* (figs. 7—9), and *N. ambigua* (figs. 13—16). Professor Costa reproduces the common, simple form as *Nodosaria ovularis* ('Foram. Foss. Terz. Messina,' Pl. I, fig. 8, 9); and it may be found under a number of different appellations in M. Terquem's various memoirs on the Mesozoic Foraminifera of France. It would be easy to extend this list almost indefinitely, for the same little organism has been found in almost every fossiliferous marine deposit from the Permian epoch to the present time, and has at every fresh appearance been greeted with a new name, often, as already observed, with a good many. The general synonymy would form a list of great length, much too long for insertion, the references given at the head of the notice are therefore principally to names employed in memoirs upon Permian fossils, and they need but little comment. At the same time it may be well, indeed it is due to Dr. Richter and Dr. E. E. Schmidt, to allude individually to the varieties figured in their papers as "species" which have been grouped together in the list of synonyms. Accurate copies of their illustrative figures will be found in Plate X.
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

Nodosaria Geinitzi, Reuss, 1854, and Richter, 1855, Pl. X. fig. 6,—is a typical six-chambered *N. radicula*; a better example could scarcely be found of any geological age.

Nodosaria duplicans and *N. subacicula*, Richter,—are very doubtful organisms, and in the absence of any fresh evidence from further research I am authorised by Dr. Richter to state his concurrence in the withdrawal of their names. The only new light thrown upon either is from the fractured surface of a piece of Zechstein Limestone, showing one whole segment and portions of two others, which, if appearances are not deceptive, would suggest an organism resembling *Nodosaria pyrula*, d'Orbigny. It may be, therefore, that *N. duplicans*, as figured in the 'Dyas,' represents a fossil with these characters; but I agree with Dr. Richter that the evidence of one or two broken and obscure specimens, in the matrix, is not a satisfactory foundation for the establishment of a species.

Nodosaria Kingi, Reuss,—is a slender form having the same general characters as *N. radicula*, but with a dozen segments or more instead of about half the number. The drawing, Pl. X, fig. 12, is copied from the original figure in the 'Dyas' monograph.

Nodosaria Kirkbyi, Richter,—is a smaller form and wider at the top. The figure in the 'Dyas,' copied at Pl. X, fig. 11, appears to have been drawn from a split specimen, and shows the produced neck and aperture of each segment. The primordial chamber seems to be wanting.

Nodosaria Jonesi, Richter, Pl. X, fig. 13,—is a minute, broad variety; but the figure, also apparently from a split specimen, shows neither stoloniferous tubes nor aperture. Probably the fracture has taken place considerably below the median line.

Nodosaria conferata, Schmid, Pl. X, fig. 14,—a long, irregular, many-chambered form; the earlier segments small and tapering, the remainder nearly equal in size. I have taken the liberty of reversing the figure, as it is usual to place the *Nodosaria* with the broad chambers uppermost.

Nodosaria ovalis, Schmid, Pl. X, fig. 15,—differs from *N. radicula* in its slender contour and regularly oval segments; whilst

Nodosaria citriformis, Schmid, Pl. X, fig. 16,—is another variety of the same class, but irregular, much attenuated, and with a larger number of chambers.

The zoological value to be attached to these trifling modifications in form must be left for each observer to estimate for himself, but the larger the number of specimens examined the stronger will become the conviction that they represent little more than individual peculiarities, and that "species" on such foundation might be made ad infinitum. The figures however are not without their value as illustrations of the range of variation of an organism of very simple type.

Distribution.—Well-defined specimens of *Nodosaria radicula* have not to my knowledge been found in any portion of the Carboniferous Limestone Series. It is not uncommon in
the middle division of the Permian, that is, the Kupferschiefer of Germany, and also in the Zechstein proper and Middle Zechstein; but it does not appear in the Upper section of the formation in that country. In England, on the other hand, it is not found in the Lower or Middle division, but is confined to the Upper Magnesian Limestones.

Subgenus—Dentalina, d'Orbigny.

Nautilus, Orthoceras, Orthocera, Nodosaria, auctorum.

Dentalina, d'Orbigny, Ehrenberg, Reuss, Richter, Geinitz, d'Eichwald, Parker and Jones, Williamson, Karrer, Brady, Stache, Schmid, &c.

Characters.—Shell awl-shaped, subcylindrical, tapering, curved; composed of several chambers in a linear series; the primordial segment often very small. Septal lines either straight or oblique; usually constricted, but occasionally unmarked by any depression of the surface. Aperture terminal, often pouting and nearly always excentric.

The fact that Dentalina is inseparable except by purely artificial distinctions from Vaginulina and Marginulina scarcely affects the relations of the Carboniferous and Permian forms; that it only differs from Nodosaria as a straight line of chambers differs from one that is more or less curved, a character of the most trivial significance, is more noteworthy, inasmuch as the common representatives of the type in the Permian Limestones are two forms which differ in no respect except in the direction of the axis and the consequent greater or less obliquity of the septa. The retention of even two names (Nodosaria radicula and Dentalina communis) out of the many that have been given to the smooth Permian Nodosariae, whilst it is a step towards the simplification of a needlessly confused and complicated nomenclature, is after all a compromise only justifiable on the ground of convenience.

Dentalina communis, d'Orbigny. Pl. X, figs. 17, 18.

Dentalina Permiana, Jones, 1850. In King's Monogr. Perm. Fossils, p. 17, pl. xvi, fig. 1.
CARBONIFEROUS AND PERMIAN FORAMINIFERA.

— Geinitz, 1861. Dyas, Heft i, p. 121, pl. xx, fig. 32.

Characters.—Shell elongate, tapering, more or less curved; consisting of numerous segments, generally somewhat ventricose. Primordial segment sometimes larger than the second, and either rounded or pointed at its free extremity. The terminal pseudopodial aperture generally excentric, sometimes produced and pouting, but more commonly a simple orifice surrounded by radiating grooves. Septal lines, straight or oblique, generally marked by constrictions. Length \(\frac{1}{10} \) to \(\frac{1}{6} \) inch (1·2 to 4·2 mm.).

For a more extended synonymy of *Dentalina communis* the reader may be referred to the 'Monograph of the Foraminifera of the Crag,' pp. 57—63. The minute variations observable in individual specimens of this common Foraminifer—the foundation of almost innumerable so-called "species"—are therein treated at some length, and an endeavour is made to trace the connection that subsists between the members of the various lines of differentiation. It would answer no good purpose to repeat in this place the details of the zoological history of so well-known an organism. The Permian specimens have no single character to distinguish them from those of later geological epochs nor from the living examples dredged in the shallow waters of our coast; and I can therefore find no reason for giving them another specific name. My friend Professor Rupert Jones, to whose early researches on the Permian microzoa we owe the original description of the ancient examples of this form, coincides in the view that it is better to discontinue the use of a specific name dependent on geological age rather than on zoological characters, and to revert to the earlier d'Orbignian appellation—a course which I have not hesitated to adopt.

Distribution.—The geological range of *Dentalina communis* is much the same as that of *Nodosaria radicula*. I am not aware that any satisfactory specimens have been found in rocks of the Carboniferous period, but it makes its appearance in the Kupferschiefer or lowest Zechstein of Germany, and occurs also in the Zechstein proper. In England its occurrence is recorded in the Upper Magnesian Limestone only, not in the Middle or Lower division of the Permian system. It is needless after what has been already stated to trace the species through subsequent geological formations.
DENTALINA.

Dentalina multicostata, d’Orbigny. Pl. X, fig. 19.

— Kingi, Jones, 1850. In King’s Monog. Perm. Foss., p. 17, pl. vi, figs. 2, 3.

— Geinitz, 1861. Dyn. Heft i, p. 122, pl. xx, fig. 33.

Characters.—Shell elongate, arcuate, longitudinally costate; costæ numerous, delicate. Chambers subglobose; sutures straight, constricted. Length \(\frac{3}{15} \) to \(\frac{1}{10} \) inch (1.0 to 2.5 mm.).

D’Orbigny’s figure of Dentalina multicostata is the first quite satisfactory representation of a finely costate, curved Nodosarian (as distinct from the thick-ribbed \(D. obliqua \), Linné), with the successive chambers rapidly increasing in size and not very numerous. It is true that the Orthoceras corniculum of Soldani (Dentalina cornicula of D’Orbigny) is in most respects a very similar shell and in point of order its name would take precedence, but its excessively large, smooth, globose primordial chamber gives the impression of individual monstrosity, and the figure would not therefore be satisfactory as a standard of reference for the normal form. In our notes on the Soldanian species of Foraminifera my colleagues and myself accept \(D. corniculum \) as a sub-varietal form on the ground of its large non-costate primordial segment. There is another striate curved Nodosarian in the ‘Testaceographia’ named by D’Orbigny Nodosaria nodosa. This is a finely costate Dentalina like \(D. multicostata \), but much more slender and elegant in outline, and with a larger number of segments all of regular elliptical shape. It would not be difficult to select many other “species” from the works of subsequent writers differing only in the most trifling particulars from \(D. multicostata \), but such a review at the present moment would not serve any good purpose; it is sufficient to say that in sacrificing the name given originally to the Permian examples of this species, and associating them with D’Orbigny’s Cretaceous form, I have

1 Soldani, ‘Testaceographia,’ vol. i, part 2, p. 98, pl. ev, fig. k. d’Orbigny, ‘Ann. Sci. Nat.,’ vol. vii, p. 255, No. 47. Parker, Jones, and Brady, ‘Ann. and Mag. Nat. Hist.,’ ser. iv, vol. viii, p. 161, pl. ix, fig. 56. Prof. Rupert Jones calls my attention to the fact that we have unwittingly, in the paper last quoted, repeated an error made by d’Orbigny in respect to the name of this variety. Soldani’s term is Orthoceras “corniculum” (a little horn); d’Orbigny makes it Dentalina “cornicula” (a little crow). There can be no doubt what was intended, and the termination originally given by Soldani must be adhered to.

Prof. Rupert Jones’s entire approval. Between the published figures of the specimens from Permian and Cretaceous beds respectively no difference in characters can be detected that would justify the most trivial distinction, and it is surely too late in the day to accept geological age alone, as sufficient basis for zoological species.

The figure (Pl. X, fig. 19) has been copied from the original engraving in Professor W. King’s Monograph, no specimens with quite the same characters having been found in the Permian beds since Professor Jones’s early researches.

Distribution.—The only recorded occurrence of Carboniferous or Permian specimens of Dentalina multicostata is in the Upper Magnesian Limestone of Byers Quarry, Durham.

Family, GLOBIGERINIDA, Carpenter.

Genus.—Textularia, Defrance.

Polymorphum, Soldani.
Nautilus, Soldani, Batsch.
Textularia, Defrance, d’Orbigny, Bronn, von Münster, Römer, Reuss, Parker and Jones, Williamson, Carpenter, Dawson, Brady, &c.
Textularia, Ehrenberg, Reuss, Schultze, Karrer, Gümbel, Stache, Schwager, Terquem, &c.

General Characters.—Shell free, regular, equilateral; conical, pyriform, oblong, or cuneiform. Segments numerous, arranged in two alternate parallel series; septal orifice at the centre of the umbilical margin of each segment, close to its line of contact with the preceding opposite segment. Aperture simple or labyrinthic.

What is to be said of the Palæozoic Textulariae will perhaps be best detailed in the account of the individual species. There is nothing to distinguish the Carboniferous representatives of the genus, as a group, from those of any subsequent age. They generally pertain to the rough thick-shelled forms and, as might be expected, have a tendency to labyrinthic internal structure.

The Permian species are still very obscure and, comparatively speaking, specimens are rare; material is as yet too scanty for the foundation of any very positive conclusions as to the limits of their varietal modifications.

Modele, No. 28;—Soldani, 'Testaceographia,' vol. i, part 2,
p. 119, pl. cxxxii, figs. I, K, &c.

Textularia recurvata (?), Ehrenberg, 1854. Mikrogeologie, pl. xxxvii, No. 11,
fig. 17.

— lagenosa (?), Id. Ibid., fig. 15.

Textularia gibbosa, Parker, Jones, and Brady, 1865. Ann. and Mag. Nat. Hist.,
sér. iii, vol. xvi, p. 23, pl. ii, fig. 60.

— — Id., 1871. Ibid., sér. iv, vol. viii, p. 168, pl. xi, figs. 115—
119.

Characters.—Shell elongate, compressed, tapering, constricted at the sutures;
depressed at the centre over the line of juxtaposition of the two series of segments;
margin rounded. Chambers few in number, broad, ventricose, especially the final pair.
Texture coarse. Length $\frac{1}{20}$ inch (1.25 mm.) or more.

The name Textularia gibbosa may be accepted with advantage for the bold coarse-
shelled, somewhat compressed varieties of the genus, having inflated chambers and often
more or less irregular growth. They constitute a natural group between the more
delicate and regular Textularia globulosa of Ehrenberg, with its nearly spherical segments,
and the compact T. sagittula of Defrance with its thin even margin. Such forms are
common amongst Tertiary fossils, sometimes attaining considerable size, and large individ-
uals occasionally have their chambers subdivided by secondary septa. The dimensions
above appended to the description of Textularia gibbosa are those of the Carboniferous
specimens; in Tertiary deposits they often attain a much larger size.

Two of the figures of Carboniferous Textularia given by Dr. Ehrenberg in the
'Mikrogeologie,' with the names T. lagenosa and T. recurvata respectively appear to
possess the general characters of T. gibbosa though it is difficult to speak with anything
like certainty from drawings based on mere transparent rock-sections.

Distribution.—In England Textularia gibbosa is found in both the Scar and the
Yoredale Limestones; in Scotland in beds of the Lower Carboniferous Limestone Group
only; it also occurs in the Calcaire de Visé of Belgium and in some of the Carboniferous
deposits of Russia.
Textularia eximia, d'Eichwald. Pl. X, figs. 27—29.

Textularia eximia, d'Eichwald, 1860. Lethaea Rossica, vol. i, p. 355, pl. xxii, figs. 19, a—d.

Characters.—Test long, tapering, often curved or irregular in outline; sub-cylindrical or only slightly compressed laterally. Segments numerous, six to ten in each series, globose, distinct. Length \(\frac{1}{15} \) inch (1.7 mm.).

In accepting M. d'Eichwald's name as applied to a group of Carboniferous Textulariae characterized by their long tapering contour, great thickness in proportion to breadth, and distinct inflated segments, I may have recognised a needless "species," but I can find no earlier description or figures to which this set of forms can be referred with propriety. They belong to the "agglutinans" type, but differ in the shape of the segments and in the tendency to inequilateral growth. Professor Reuss figures a number of somewhat similar varieties from the Cretaceous strata of Bohemia, and of Westphalia, such as Text. fœda from the former, and Text. bolivinoides, T. parallela, T. concinna, T. Partschi, and T. globifera from the latter. These appear to differ from each other chiefly in the amount of lateral compression and in the shape of the terminal chamber, but all of them have the rounded periphery and ventricose segments.

The mere form of the chambers, and the general aspect of the shell as depending upon it are but slight grounds on which to rest zoological subdivision in so polymorphic a class of organisms as the Foraminifera, yet most of the so-called "specific" distinctions are dependent on characters of this nature, and when, as in the present case, they indicate a tolerably well-marked group, the expediency of recognising them may be accepted as a matter of convenience without insisting on sharp lines of demarcation. Without such subdivision the study of the Foraminifera would be impracticable, but it is none the less necessary that the limits of readily ascertained and fairly permanent characters should be observed, otherwise a multiplicity of names, more embarrassing than the inconveniently large groups they were designed to obviate, is the result.

M. d'Eichwald had but few specimens of fossil microzoa at his command, and his description of Textularia eximia has required some modification to include the finer examples which occur amongst others in our British Carboniferous beds. This appears to be the only variety of the genus which he himself obtained from the Russian limestones, though he mentions Text. lunata, Ehrenberg, as a species occurring among sand-grains at Witegra.

Distribution.—By far the larger number of Carboniferous Textulariae have the
TEXTULARIA.

characters of *T. eximia*. In England it is found more or less frequently throughout the Carboniferous Limestone Series; in Scotland it occurs in the Calciferous Sandstone, and Lower Carboniferous Limestone Group, and possibly in the Upper division as well. M. d’Eichwald records its presence in the Fusulina-rocks of Russia.

Textularia Jonesi, Brady. Pl. X, figs. 20—22.

Textularia cuneiformis, Jones, 1850. In King’s Monogr. Perm. Fossils, p. 18, pl. vi, fig. 6.

— — *Geinitz*, 1861. Dyas, Heft 1, p. 122, pl. xx, fig. 35.

Characters.—Test short, broad, complanate, tapering; depressed over the line of juxtaposition of the two series of segments. Segments nearly opposite, long, narrow, slightly convex. Margin thin, but little constricted at the sutures. Length \(\frac{1}{30}\) inch (0.5 mm.).

The figure in King’s Monograph to which Prof. T. Rupert Jones attached the name *Textularia cuneiformis* is not very intelligible, the obscurity being probably the result of distortion in the specimen or its injury in process of fossilization—at any rate Dr. Richter’s drawings in Geinitz’s ‘Dyas’ yield a more satisfactory basis for description and comment. But through the kindness of my friend Mr. J. W. Kirkby, who has sent me his only English specimen of the species (Pl. X, fig. 20), and of Dr. Richter who has supplied me with two additional drawings from fine examples in his own collection (figs. 21, 22), I am not entirely dependent on previously published materials.

The English example (fig. 20) is smaller than those of the Thuringian Zechstein; it is but little more than \(\frac{1}{30}\) inch (0.44 mm.) in length, the width across the top being almost exactly the same, and it has altogether about sixteen segments. Dr. Richter’s specimens are larger and have a correspondingly greater number of chambers. The singular feature of all, whether English or German, consists in the arrangement of the chambers, the two series being almost exactly opposite, instead of alternating with each other. This is so uniform a character that a doubt has more than once occurred to me
whether the specimens were actually Textularia — whether they might not belong to some unknown broad variety of one of the uniserial types, the depressed median line being in reality a fracture, the result of pressure on a very thin shell-wall. This supposition received some support from the condition in which the shells are so frequently found, that is, split horizontally. On the other hand, some of the specimens so laid open show distinct duplication of the chamber-walls where the ends meet in the centre of the test, which could not occur, at any rate with regularity, unless they belonged to two series of independent segments. The only other genus except Textularia to which these little fossils bear any superficial resemblance is Frondicularia; but even in the absence of satisfactory evidence as to the course of the stoloniferous tubes, which are obscure when not entirely obliterated, there is sufficient in the conspicuous characters of the figured specimens to render an affinity with that subtype improbable. So that, notwithstanding the shade of doubt consequent on the peculiarity alluded to, there is at present no valid reason for altering the position in which the species has heretofore been placed, that is, in the genus Textularia.

It has been necessary to change the trivial name, inasmuch as the term Textularia cuneiformis had been employed by d’Orbigny,¹ previous to the publication of Professor King’s work, for another and distinct species. Under these circumstances I have followed the usual custom, which happens to coincide with my inclination, and have associated Professor Rupert Jones’s name with the form under notice.

Distribution.—In the Thuringian area, Textularia Jonesi is by no means rare—being found in the Kupferschiefer, in the Zechstein proper, and in the Dolomite of the Middle Zechstein. In England it is a very scarce fossil; the only two localities in which I know of its having been collected are at Summerhouse, near Darlington, in the Lower, and at Byers Quarry in the Upper Magnesian Limestone.

Textularia Triticum, Jones, 1830. In King’s Monogr. Perm. Fossils, p. 18, pl. vi, fig. 5.

Geinitz, 1861. Dyas, Ieft 1, p. 122, pl. xx, figs. 36, 37.

TEXTULARIA.

Characters.—"Shell conical, somewhat flattened on two of its sides; its horizontal section oval; composed of nine subglobose cells; sutures deeply sulcated. Length 3/30, thickness 1/10 inch," (0·85 mm.—0·15 mm.).

I have never had the good fortune to meet with this species, though I have at one time or other searched large quantities of the magnesian limestone débris from the locality (Byers Quarry) whence Prof. T. Rupert Jones's specimens were obtained five and twenty years ago. It is much to be regretted that the original examples have been mislaid or lost. Under the circumstances the only course left for me has been to reproduce the description and figure as given in Prof. King's Monograph.

Dr. Richter, of Saalfeld, describes and figures (loc. cit.) specimens which he regards as pertaining to the same species, from the Zechstein formation of Germany, thereby contributing to its better definition. His description, which does not entirely accord with that quoted above from Prof. Jones, runs as follows. "This also is one of the compressed forms like the foregoing (T. cuneiformis), and is always found split on the median plane. Narrow wedge-shaped, somewhat smaller than T. cuneiformis, the relation of length to breadth is as 1·00 to 0·55. The scarcely alternating chambers are thick-walled, equal in height and length (only the latest chambers are sometimes rather shallower), concave and smooth." The length of the Zechstein specimens appear to be about 3/15 inch (1·0 mm.). Through the kindness of Dr. Richter I am enabled to give a better figure of the species than that which accompanies his own description: Pl. X, fig. 25, is an accurate copy of the drawing of a Thuringian specimen in his cabinet. The chambers are rather longer in proportion to their depth than the previously published figures indicate, but the general characters accord with Dr. Richter's description above quoted. These German examples appear to be much more regularly built than that to which the name was originally applied, but beyond this fact, which is apparent from a comparison of the figures, the available materials leave little scope for comment.

Distribution.—In the Upper Magnesian Limestone, Byers Quarry, Durham; in the dark-grey Lower Zechstein Limestone of Thuringia and possibly in the Middle Zechstein also. In all localities very rare.

TEXTULARIA MULTILOCULARIS, Reuss. Pl. X, fig. 23.

TEXTULARIA MULTILOCULARIS, Reuss, 1861. In Geinitz's Dyas, Heft i, p. 122, pl. xx, fig. 38.

Dr. H. B. Geinitz in his great work on the Permian formation (loc. cit.) figures, on the authority of the late Professor von Reuss and from his drawings, an attenuated Textu-

1 Textularia cuneiformis is T. Jonesi of the present memoir.
laria, with not less than forty chambers. No zoological description is given of the species, the dimensions of the specimens are not stated, nor is there any record of the magnifying power employed for the figures. The drawings which have been accurately copied (Pl. X, fig. 23, a, b) represent a very long, narrow, compressed shell, slightly irregular and curved in outline, and with even margin; the septa marked by fine lines without constriction or superficial depression; the segments regular and very numerous. To these particulars which are based upon Dr. von Reuss’s figures I can add nothing.

Distribution.—Lower Zechstein of Gera in Thuringia.

Subgenus.—Bigenerina, d'Orbigny.

Bigenerina, d'Orbigny, Parker and Jones, Carpenter, Seguenza, Brady, Schwager.

General Characters.—Test free, regular, elongate; formed of numerous segments; the earlier ones arranged in two alternate parallel series; the later ones in a single straight or curved line. Aperture simple or labyrinthic. Surface, rough.

In strict zoological sense Bigenerina is but a subordinate group of the genus Textularia, characterised by a dimorphous habit of growth. The earlier chambers are arranged on the typical biserial plan, whilst the later ones are joined end to end in a single row. Such forms are more common in the recent condition than as fossils; they are generally of small size and of long attenuated contour, the Textularian segments occupying but a small part of the whole shell. A limited number of specimens pertaining to this sub-type have been found in material of Carboniferous age, and these belong to a short stout variety not hitherto described.

Bigenerina patula, nov. Pl. VIII, figs. 10, 11, and Pl. X, figs. 30, 31.

Characters.—Test oblong, rounded, subcylindrical; somewhat compressed and tapering in the earlier portion. Biserial segments, numerous, broad, ventricose; uniserial segments few in number, rounded. Aperture, either a large single central orifice, or compound and labyrinthic. Length, \(\frac{3}{10} \) inch (1.25 mm.).

This short broad variety of Bigenerina seldom shows more than two or three uniserial chambers and therein differs conspicuously from such forms as Bigenerina nodosaria and B. digitata, the biserial segments of which often constitute so small a proportion of the whole shell as to be recognised with difficulty. It is essentially a
Textularia of the stout thick-shelled type, like T. gibbosa, with the addition of a line of two or three inflated subcylindrical segments. The tendency to the labyrinthic interior structure, which characterises the larger Textulariae, is strikingly seen in such specimens as Pl. X, figs. 30 and 31, and so far as it goes confirms the relationship. M. d'Orbigny in his generic description lays some stress on the regular and equilateral contour of the shell; but occasional slight asymmetry, as exhibited in fig. 30, cannot be regarded as of any morphological importance.

Distribution.—In England Bigenerina patula has only been found in the Saccammina-limestone of Elfhills, Northumberland; in Scotland it is equally rare, having been noticed in but one locality, belonging to the Lower Carboniferous Limestone Group. Specimens are occasionally, though rarely, met with in the friable Fusulina-limestones of Russia.

Genus.—Truncatulina, d'Orbigny.

Testa hammoniformes (in part), Soldani.
Nautilus, Walker and Jacob, Gmelin, Fichtel and von Moll, Maton and Rackett, Pennant, Dilwyn, Turton.
Serpula, Montagu.
Polyxenes, Cibicides, de Montfort.
Lobatula, Fleming, Thorpe.
Truncatulina, d'Orbigny, Roemer, von Hagenow, Reuss, Parker and Jones, Williamson, Seguenza, Carpenter, Dawson, Brady, Günzel, Sars, Robertson, Parfitt, Vanden Broeck, &c.
Rotalina (in part), Alth, Reuss.
Rotalina (in part), Reuss.
Planorbulina, Parker and Jones, Carpenter.

General characters.—Test parasitic, spiral; outermost convolution alone visible on the inferior lateral surface; all the convolutions, including the ultimate segment, apparent on the truncate, superior (adherent) surface. Segments numerous; convex below, flat, and truncate above. Orifice single, in front of the ultimate segment, close to the carina of the preceding convolution and continued, as a fissure, along the superior connecting spiral, at the expense of the umbilical borders of the last two or three segments, but closed in by superimposed layers of shell in all the remaining ones.

It would be more strictly correct to speak of Truncatulina as a subgenus of

1 D'Orbigny in his various descriptions speaks of the spiral surface of the test of the Truncatulinae as the "lower" surface because it happens to be flat, and vice versâ. Williamson and others, having regard to homology, treat the spiral surface in all the Rotaline genera as the "superior" surface. The anomaly in Truncatulina is apparent rather than real, whilst uniformity in terminology is a matter of solid importance.
Planorbulina, for its modifications, by gradational variations, assume the characters of the latter type. But the name Truncatulina is well understood as applied to a certain set of specialised forms, and in the brief notice which is all that is needful in this place for a type so slightly represented in the Carboniferous fauna it is undesirable to complicate the terminology.

It may be well to explain also that, although the synonymy of the Rotaline types—Truncatulina, Pulvinulina, and Calcarina—has been given at some length, no attempt has been made to render it exhaustive. The reader interested in such matters may turn to Messrs. Jones and Parker’s memoir ‘On the Foraminifera of the Family Rotalinæ’ for much more extended references.

The Carboniferous Truncatulinae offer no points calling for special notice, the most remarkable fact connected with them being their occurrence so low down in the geological series. My friend Prof. W. K. Parker, on seeing the specimens, observed that, except for alterations in appearance produced by age and by the process of fossilization, he could detect nothing in their general features to distinguish some of them from the forms now living in our seas—a remark in which I entirely concur.

Truncatulina carbonifera, nov. Pl. VI, fig. 10.

Characters.—Test oblong, depressed, rugoso-punctate, irregular; superior surface complanate; inferior, convex; margin carinate. Segments few, inflated; the later ones relatively large. Sutures more or less limbate. Diameter, \(\frac{1}{10}\) inch (0.42 mm.).

A somewhat peculiar variety of Truncatulina differing in its carinate margin, irregular build, and inflated chambers, from any hitherto described. It is possible that the specimen represented in fig. 10 may originally have had an additional chamber; and if so, the raised line crossing the terminal segment is doubtless the remains of its shelly wall, and not, as it appears, a mere exogenous growth. The species is somewhat larger than the more regular form Tr. Boneana; indeed, it approaches the common Tr. lobatula in its dimensions.

Distribution.—In the Calcaire de Namur of Belgium, associated with Truncatulina Boneana, very rare.

Truncatulina Boueana, d'Orbigny. Pl. VI, fig. 11.

Characters.—Test suborbicular, depressed, rugoso-punctate; superior surface complanato-concave; inferior, convex, slightly excavated at the umbilicus; segments nine in number, complanate, arcuate; margin somewhat limbate. Diameter \(\frac{3}{10} \) inch (0.33 mm.).

The above description is a mere English rendering of d'Orbigny's words, excepting in the transposition of the terms "superior" and "inferior," on the grounds set forth in a former page. One or two minute Truncatulinae from the Belgian Carboniferous beds answer so exactly to the description of Tr. Boueana and to the figures given in the "Vienna Basin" monograph, that, notwithstanding the difference of geological age, they must be treated as representatives of that form. They correspond even in dimensions and number of visible chambers. There is not much in the name, for after all Truncatulina Boueana only represents a neatly made, small sub-variety of Tr. lobatula, having an even margin, with the later segments slightly embracing on the superior surface; but, as the only specimens found have the characters assigned to this particular form, it seems best to retain the trivial appellation.

Distribution.—It would, I suspect, be impossible to define the distribution of this variety, as distinct from Tr. lobatula, in the Tertiary microzoic rocks or in the living condition. In the Carboniferous beds it is represented by a very few specimens from the Calcaire de Namur of Belgium.

Genus—Pulvinulina, Parker and Jones.

Hammonle, Nautili, Soldani.
Nautilus, Fichtel and von Moll.
Pulvinulus, Placentula, Lamarck.
Eponides, Cancris, Cidarollus, de Montfort.
Crepidulina (in part), Rotalites (in part), Defrance.
Rotalia (in part), d'Orbigny, Reuss, Ehrenberg, Schwager.
Rotalina (in part), d'Orbigny, Reuss, Egger, Williamson, Parker and Jones.
Pulvinulina, Parker and Jones, Carpenter, Reuss, Karrer, Brady, Gümbel, Sars, Vanden Broeck.
General Characters.—Test free, spiral, typically bi-convex and trochoid, but varying from this to depressed, complanate, or even vermiculate; composed of few convolutions, all of which are visible on the superior lateral surface; the inferior surface nearly or entirely occupied by the last convolution. Segments less numerous than in the other *Rotalinae*, varying from 7 to 26 in number. Shell very finely porous and almost destitute of canal-system; sutures often liuncate, sometimes granulate; the limiation of the sutures frequently accompanied by further exogenous deposit in the form of a star radiating from the umbilicus. Margin angular or subcarinate. Aperture large, variable, often arcuate and notched, situate on the outer edge of the inferior surface of the terminal segment near the umbilicus.

Only a few small obscure specimens referrible to the genus *Pulvinulina* have been found in Carboniferous deposits. These are described under the name *Pulvinulina Broeckiana*. The genus has been long known to exist as far back as the Trias, and from that period through succeeding geological eras it is represented by a gradually increasing number of species. The type still furnishes some of our most common deep-sea Rhizopoda.

Pulvinulina Broeckiana, nov. Pl. VI, fig. 12.

Characters.—Test orbicular, depressed; superior side only slightly convex; inferior more strongly so; margin carinate. Spire composed of about three convolutions. Upper surface smooth, sutures marked only by broad dark lines of clear shell-substance; inferior surface more or less granular or tuberculate, sutures marked by slight depressions. Diameter $\frac{4}{15}$ inch (0'65 mm.).

In many particulars this form, with which I have had the pleasure of associating the name of my friend M. Ernest Vanden Broeck, of Brussels, to whose kindness I owe, directly or indirectly, all the Belgian Carboniferous material I have had the opportunity of examining, closely approaches the characters of *Pulvinulina elegans*, d’Orbigny; a fact the more interesting because that species and the allied *P. cassiana* (Gümbel) are amongst the oldest of the true *Rotalinae*, which have hitherto been satisfactorily identified. Messrs. Parker and Jones found minute specimens of the former in abundance in the alabaster pits of Chellaston, Derbyshire, in a marl probably of later Triassic age; whilst Dr. Gümbel records the latter from the Trias of the Alps. The Carboniferous form is much less convex on its superior surface than *P. elegans*, and does not possess the characteristic limiation of the sutures; the tuberculate condition of its inferior surface is

1 'Quart. Journ. Geol. Soc.', 1860, vol. xvi, p. 453, pl. xx, fig. 46, under the name *Rotalia elegans*.
likewise peculiar. A larger supply of material might show P. Broeckiana to be only a modification of the species referred to, but the few specimens hitherto found seem very distinct from it.

Distribution.—In the Calcaire de Namur of Belgium. Very rare.

Genus.—Calcarina, D'Orbigny.

Nautilus, Gmelin, Fichtel and Moll.
Rotalia, Lamarck, d'Orbigny, Reuss.
Siderolina, Defrance, d'Orbigny.
Calcarina, d'Orbigny, Reuss, Carpenter, Parker and Jones, Brady, Gümbl, Schwager.
Rotalina, d'Orbigny, Egger.
Siderolites, Siderolithus, Sideroporus, Siderospira, Asteriatites, auctorum.

General Characters.—Test free, convoluted, depressed; rarely smooth, more frequently tuberculate or rough; formed of a spire regularly coiled; convolutions all more or less visible on the superior surface, embracing on the inferior, formed of many chambers. Shell-wall produced at intervals into marginal appendages, often much elongated, simple or furcate, resembling the rowel of a spur. Interior structure remarkable for its tendency to produce supplemental growths of shell-substance forming an intermediate skeleton furnished with a well developed canal-system. Aperture, a longitudinal slit (often bridged over so as to form a line of orifices) in the terminal chamber, close to the penultimate convolution.

The genus Calcarina is so small and unimportant a constituent of the Carboniferous fauna that there seems no need in this place to enlarge upon its general history. It is much better known as a recent than as a fossil type. The great abundance and large size of the living specimens obtained in tropical seas, together with their striking peculiarities, whether of external form or internal structure, have invested the genus with somewhat unusual zoological interest.

Calcarina ambigua, nov. Pl. VI, fig. 13.

One or two small Rotaline shells which there can be little doubt pertain to the genus Calcarina, have been found in the débris of the Belgian Carboniferous Limestones. The exterior of these little fossils is so obscured by age and external agencies, that it
would not be wise to attempt to describe in concise terms their special zoological characters. They appear to represent a smaller species than any hitherto described, the diameter of the figured specimen, which is the largest, being only \(\frac{1}{10} \) inch (0.63 mm.). The margin has been strongly carinate and apparently rowelled, but it is partly broken away and partly worn smooth. The less prominent parts of the surface show the remains of the hispid or tuberculate condition, which is so common a characteristic of the smaller varieties of the genus Calcarina.

The drawings of one of the Carboniferous specimens, Pl. VI, fig. 13, though of necessity deficient in minute characters, will serve as a record of the occurrence of the form, and render its identification easy should further research bring to light a more plentiful supply of specimens.

Distribution.—In the Calcaire de Namur, Belgium, very rare.

Family, NUMMULINIDA, Carpenter.

Genus.—Archædiscus, Brady.

General Characters.—Shell convoluted, rounded, more or less unsymmetrical; formed of a non-septate tube coiled upon itself in a constantly varying direction. Shell-wall traversed by very numerous, parallel, minute tubuli.

The genus Archædiscus was established for a number of minute discoidal fossils, structurally related to Nummulina, but differing in some important morphological particulars. The range of modification observable in individual specimens pertaining to the type is not great, and for the present there seems no need to recognise more than a single specific form; its detailed description and history therefore may best be given under the subordinate heading.

Archædiscus Karreri, Brady. Pl. XI, figs. 1—6.

Id., 1873. Mem. Geol. Survey Scotland; Expl. Sheet 23, p. 95, &c.
CHARACTERS. — Shell lenticular, rounded, bi-convex, somewhat unsymmetrical. Periphery determined by the last revolution of the tubular cavity. Margin angular or slightly rounded; entire except near the orifice where the shell, owing to diminished thickness, is often broken and irregular. Aperture, the open unconstricted end of the tubular cavity, rounded or crescentic, simple. Diameter, $\frac{1}{3}^\circ$ inch (1·0 mm.).

The brief notice above referred to, read before the British Association at its Bradford Meeting, and subsequently published in the Annals of Natural History (loc. cit.) contains an account of the structure and affinities of this interesting type as far as at present known—continued observations having resulted in little beyond the confirmation of the views therein expressed and the extension of our knowledge of its distribution.

Externally the specimens of ARCHELIDISCUS KARRERI are lenticular discs, seldom more than a twenty-fifth of an inch (1·0 mm.) in diameter, and a fiftieth of an inch (0·5 mm.) in thickness and never quite symmetrical. They often present an appearance as of laminated structure, and altogether bear a superficial resemblance to minute Nummulites.

The interior will be best understood by comparing it to a tube coiled upon itself in constantly varying directions, the periphery being determined by the last circlet of the coil. The tube, which represents the cavity occupied during life by the main body of the animal, is never subdivided into chambers either by constriction or by true septa, and it increases in size with each successive turn. The earlier portion in one section which has been measured has a transverse diameter of about $\frac{1}{4}$ of an inch (0·04 mm.), the later portion $\frac{1}{2}$ of an inch (0·13 mm.), though in most cases the difference is scarcely so great as these figures imply. The shape of the tube also varies considerably. Its transverse section at times represents about three-quarters of a circle, the truncate or flattened side facing inwards; at others it exhibits an irregularly crescentic or saddle-shaped contour, the concave surface of which embraces portions of the preceding convolutions to a greater or less extent.

The coil terminates externally on the periphery of the disc, and the majority of specimens have an appearance as though a part of the end of the tube had been broken away (as sometimes observable in NUMMULINA), owing probably to the greater delicacy and tenuity of the newly deposited shell-substance. The mouth of the tube, which forms the general aperture of the shell, appears not to have been constricted or otherwise closed in.

A shell formed in the manner described would present an irregular surface, were the walls of the tube of equal thickness throughout, but in reality the exterior is even and smooth. A transverse section of the entire fossil (Pl. XI, fig. 4) shows that this is due to a somewhat remarkable thickening of the shell-wall, especially on its lateral surfaces, most observable near the centre of the disc, and usually to a greater extent on one side.
than on the other. Sometimes the deposit of shell-substance is proportionally so great that the animal has occupied but a small part of the whole test.

The minute structure of the shell is far better preserved than might be expected in so old a fossil, and it has many points of interest. The walls throughout are traversed by a multitude of very minute tubuli. In the thinner portions (best seen in the horizontal section, Pl. XI, fig. 3), these are apparently the ordinary pseudopodial foramina; in the thicker (fig. 4), though their course is more or less sinuous, they are perhaps only the prolongation of the same. Quite distinct from these, there exists a series of tubes of much larger dimensions, most readily observed near the ends of a transverse section, and clearly defined by a magnifying power of 200 diameters or more, as in fig. 5. I have been unable to make out what purpose they serve, but the presence of two distinct systems of tubulation is a noteworthy fact. A condition to some extent analogous may be found in other genera of Foraminifera, in *Orbulina* for example, but as that genus is characterized by a thin and uniform shell-wall, the two cases may have nothing in common in their structural significance.

With reference to the lamination of the shell. In the true Nummulite this is a character of importance, for it arises from the prolongation of the ase of the saddle-shaped chambers to the umbilicus of the test, each turn of the spire forming a fresh and complete investment of the whole. In *Archaeodiscus* a tendency to a similar condition exists, but developed in a much less marked degree and with no approach to uniformity. A section of the test highly magnified, as in fig. 6, shows the successive layers of shell formed by the prolongation towards the umbilicus of the crescentiform edges of the tube; but the earlier portions of the tube are nearly circular (transversely), and it is only in the later stages of growth, when it becomes concavo-convex in section, that it assumes this investing character.

Whether there is any essential distinction, either in structure or function between the thin shell-wall and the additional deposit which makes up the thicker portion—in other words, whether there is as in the Nummulite a distinct primary and secondary skeleton, is a question that must still to some extent be left open. It is, nevertheless, quite possible at times to trace the thin line of the primary wall, even when no difference in structure is observable between it and the immediately adjacent supplementary layer. In the same way, though I have not been able to identify any part of the structure as referrible to a true canal-system, there are appearances that continually suggest the possibility of its existence.

The foregoing description, though incomplete in many points, is sufficient to indicate the Nummuline affinities of *Archaeodiscus*. It differs from the typical Nummulite in its less complex general structure,—a coiled non-septate tube taking the place of a spiral line of chambers, the tube, however, showing something of the same tendency as the Nummuline chambers to bifurcate laterally.

The difficulty of determining the structure and organization of so minute a fossil is
always great; but in the present case it is much increased by the infiltration with a sub-crystalline substance of the same chemical composition as the original shell. It may be recollected that the true structure of the Nummulite itself, a very large organism, comparatively speaking, was chiefly elucidated by the study of non-infiltrated specimens from the sandy Tertiary beds of Hampshire. It is needless to say that no examples in this favorable condition have been available from the compact rocks of the Carboniferous age.

From Nummulina the genus *Archædiscus* is readily distinguished by features already detailed. The only Carboniferous Foraminifera with which there is much likelihood of its being confused is the very simple *Trochammina incerta*. The likeness is quite superficial, but there is considerable *prima facie* resemblance between the small, smooth specimens of the latter species, especially in its thicker biconvex varieties, and very young examples of *Archædiscus*.

Distribution.—When originally described this little fossil had only been found in the rich shale of Brockley in Lanarkshire that has yielded so many rarities, but further investigation has revealed its presence in other localities. It has now been collected both from the Scar Limestone and the Yoredale Rocks of England; from the Calciferous Sandstone and the Lower Carboniferous Limestone Groups of Scotland, as well as from one habitat pertaining to the Upper Limestone Group of that country. I have found no traces of it in material from foreign sources.

Genus.—*Amphistegina, d’Orbigny.*

Amphistegina, d’Orbigny, Bronn, Reuss, Seguenza, Williamson, Carpenter, Parker, Jones, and Brady, Karrer, Bunzel.

Heterostegina, Nonionina, Ehrenberg.

General Characters.—Shell free, discoidal, inequilateral, more convex on one side than the other, consisting of a turbinoid spire, each convolution of which completely embraces the previous one. Chambers saddle-shaped; the alar prolongations on the upper side simple (as in Nummulina); on the lower, divided each into two portions by the constriction of the sarcode to a narrow neck;—the secondary lobes being directed backward and radially, and being intercalated, give the appearance externally of an independent whorl of chambers. Aperture on the lower side of the ultimate chamber, as in the *Rotulinae*.

The occurrence of a well-defined example of the genus *Amphistegina* in the Carboniferous Limestone is not only remarkable as an extension of the supposed range.
of the genus in geological time, but also in the increased importance it imparts to the *Nummulinitidae* in their relation to the Palaeozoic epoch.

In the living condition *Amphistegina* is widely distributed. It is found, often in large numbers, in the Coralline and Coral Zones of tropical and subtropical seas, rarely or never in those of temperate latitudes.

It is common in microzoic deposits of the Tertiary epoch from the Eocene forward, both in Europe and America. Earlier than this it has only been recorded hitherto from a single locality. D'Orbigny,1 in the `Tableau Méthodique,' gives amongst the species of *Amphistegina*, one which he names *A. Fleuriausi* from the Upper Chalk of Maestricht, but without any details as to specific characters. Professor Reuss2 identifies this with a form found by himself in the same deposit. It is quite open to question whether the fossils described and figured by Professor Reuss ought not to be referred to the allied genus *Operculina* rather than to *Amphistegina*; but on the supposition that they pertain to the latter type, they have been regarded as marking its earliest appearance, so that the discovery of a veritable member of the genus as low down in the geological series as the Carboniferous Limestone adds a long period to its life history.

Amphistegina minuta, nov. Pl. XI, fig. 7.

Characters.—Shell discoidal, lenticular, the two sides nearly equally convex. Margin entire, acute. Chambers very numerous, sinuous. Surface smooth. Diameter \(\frac{1}{32}\) inch (0.77 mm.).

The unique representative of the genus *Amphistegina* found in the Carboniferous Limestone, though exhibiting in a striking manner the characters of the type, yields only slender basis for the details of specific description. It resembles d'Orbigny's `Modèle' (No. 40) of *A. vulgaris*, but is more Nummuline in general aspect, and the segments are relatively narrower and more numerous. It seems in fact to lie, morphologically, between *A. vulgaris* and *A. Lessonii* (Modèle No. 95). The shell is, however, smaller than any fossil variety of the genus which has as yet been described. The oldest species, geologically speaking, hitherto recorded (*A. Fleuriausi, D'Orb.*) has a diameter, according to Reuss, of \(\frac{12}{10}\) of an inch (2.0 mm.); D'Orbigny's three Miocene forms range from the same size to \(\frac{1}{6}\) of an inch (4 mm.); and Dr. Carpenter gives from \(\frac{1}{20}\) to \(\frac{1}{10}\) of an inch (1.2 to 3.7 mm.) as the range of variation in the various members of the genus. The modification now under notice, in the mature condition, as far as can be told, has only a

diameter of $\frac{3}{8}$ of an inch (0.8 mm.); so that in the absence of prominent structural peculiarities, its diminutive size may be taken as a basis for its specific name.

The almost identical dimensions of the specimens of the allied types Nummulina and Archaediscus would make it appear that relatively small size is the normal character of the Carboniferous representatives of all three genera.

Distribution.—Only found hitherto in the "Foraminifera Bed" of the Upper Mountain Limestone, Leigh Woods, Bristol.

Genus.—Nummulina, d'Orbigny.

Nummulina, d'Orbigny, Michelotti, Brom, Galeotti, Buvignier, Carpenter, Williamson, Bornemann, Parker and Jones, Seguennas, Gümbel, Brady, &c.

Nautilus, Ammonites, Helicites, Camerina, Discolithes, Phacites, Nummulites, Lenticulites, Rotalites, Lycophris, Nummularia, Egeon, Assilina, auctorum.

General Characters.—Shell free, spiral, equilaterial or sub-equilateral, regular, rounded: typically, discoidal, lenticular. Convolutions embracing, the last enclosing those preceding it. Segments numerous, V-shaped, the later ones, in mature shells, gradually contracted at the peripheral margin so that the ultimate convolution loses itself in the penultimate. Aperture single, simple, close to the periphery of the preceding convolution.

Any general history of the genus *Nummulina* would be misplaced in a paper relating primarily to fossils of the Carboniferous period; nor is there the necessity to enter at length upon a subject which has already been exhaustively treated in many of its aspects in the well-known works of Joly and Leymerie, d'Archiac and Haimé, Williamson, Carpenter, Carter, Rupert Jones and Parker, and others. Anything that could be said within the space that could properly be devoted to it here would be but an imperfect abstract of the writings of such authors. At the same time the occurrence in Palaeozoic beds of undoubted examples of a type of animal life for long regarded as peculiar to the Tertiary epoch can scarcely be introduced without some notice of other recorded Præteriary Nummulites, even though it be, in part at least, a repetition of what has already appeared.

In 1849 Rouillier and Vosinsky\(^1\) described under the name *Nummulina antiquior* an unsymmetrical Foraminifer from the white Carboniferous limestone of the neighbourhood of Moscow. In 1861 d'Eichwald,\(^2\) supplied with specimens, as I understand, by these

2. 'Lethcea Rossica,' vol. i, p. 352, pl. xxii, fig. 16.
authors, adopted their specific term, added a description of an allied symmetrical variety, and formed of the two a new genus *Orobius*, the representatives being named *O. antiquior* and *O. equalis* respectively. The separation from the genus *Nummulina* was grounded on the non-tubulation of the shell and the absence of any indication of a canal-system. Through the courtesy of General G. von Helmersen of St. Petersburg, I have had the opportunity of studying these and other allied forms existing in large numbers in the Russian white Carboniferous limestones, and can confirm in great measure d'Eichwald's observations, though I hope at a future time to be able to show that, not only the unsymmetrical specimens described by MM. Rouillier and Vosinsky, but also M. D'Eichwald's symmetrical discoidal form, so like a Nummulite in external appearance, are in reality true *Fusulina*.

Turning to the Secondary epoch Buvignier has described and figured an Upper Jurassic Nummulite (*N. Humbertina*) from the Astarte-marl of the north-east of France, and, though more detailed illustration would have been acceptable, there seems little reason to doubt the correctness of the diagnosis. More recently Dr. Gümibel has entered the field with a well-marked member of the genus (*N. jurrassica*) from the *Ammonites tenuilobatus* and *A. dentatus* zones of the Upper Jurassic formation of Franconia, instancing at the same time a fossil with similar characters from the Jurassic Beds of Möskirch in Baden. Passing to the Cretaceous system—as early as 1847, Prof. Zeuschner mentions the occurrence of Nummulites in large numbers in a dolomite of Neoconian age in the Carpathian Mountains, but without entering into any particulars. In 1867 Fraas obtained from the Cretaceous formation of Palestine a number of *Nummulina*-like fossils, which he assigned to the genus under three specific names. One of these at the least, *N. Arbiensis*, Conrad, appears to be a true Nummulite, though about the other two there may be considerable doubt. The few cases which have been quoted form, perhaps, the entire record of the occurrence of specimens of the genus *Nummulina* previous to its enormous development in the early part of the Tertiary epoch, and, as will be seen, they are so few in number that, whilst they scarcely affect the general truth of previously accepted views as to its distribution, they impart a new aspect to its life-history. The structural relationship which exists between *Nummulina* and *Fusulina*, that is to say, between the great rock-building genera of the Tertiary and the Palaeozoic epochs is one of extreme interest. Hitherto *Fusulina* has been regarded morphologically as little more than a Nummulite drawn out at its umbilici, and so assuming the long, fusiform, tapering contour presented by the familiar type *F. cylindrica*; but if it can be shown that oblate and even discoidal specimens, such as those already alluded to as contained in the limestone of Miatshkovo near Moscow, are true *Fusulina* what becomes of the zoological distinction between the two types?

4 'Geol. Beobacht. am Nil, auf der Sinai-Halbinsel u. in Syrien,' 1867, s. 82—84, Taf. 1, fig. 8.
NUMMULINA.

NUMMULINA pristina, *Brady.* Plate XI, figs. 8—11.

Characters.—Shell lenticular, obscurely radiate, with angular or more commonly blunt and rounded margin. Composed of three to four convolutions gradually increasing in width, the third convolution having about fifteen chambers. Primordial chamber of medium size. Diameter \(\frac{3}{10}\) inch (0·85 mm.); thickness \(\frac{1}{10}\) inch (0·36 mm.).

The brief zoological description of this little Nummulite above given represents the average characters of the comparatively few specimens that have hitherto been met with. In some particulars further information may be gained by the detailed examination of individual specimens.

The dimensions above given are those of one of the larger examples. Most of the specimens are bilaterally symmetrical or nearly so, white and smooth as to surface, the uniformity being broken only by radial lines more transparent in texture than the rest of the shell. A section on the median plane reveals a spiral of three or four convolutions, the whorls of nearly equal width or only increasing slightly towards the periphery, a primordial chamber relatively rather large, the ordinary chambers few in number for a Nummulite, and bounded by curved septa.

The relation between the diameter and thickness is apparently tolerably constant, that is, about as \(2\frac{1}{4}\) to \(1\); larger examples, however, exhibit some tendency to spread out and grow thinner at the periphery. When the surface of the test is not worn, the radiation is either very indistinct or appears in the form of uneven, slightly curved lines of somewhat darker colour, but without sensible limabation; but in weathered specimens not only are the lines more or less elevated, but the centre from which they proceed is thickened and the test becomes to some extent umbonate also.

An accidentally split specimen (Pl. XI, fig. 9) will serve the purpose of a horizontal section. It consists of three convolutions, the outermost having sixteen chambers, and the second twelve or thirteen. Another somewhat larger individual has precisely similar septation, so that, without assigning any great importance to it, the drawing may be assumed to represent a specimen with about the normal number of chambers for the adult condition.

The primordial chamber has been measured in three examples, and the diameter found to be \(0\cdot004, 0\cdot003, \) and \(0\cdot0027\) of an inch (0·1, 0·08, and 0·07 mm.), being respectively from \(\frac{3}{10}\) to \(\frac{1}{10}\) of the entire diameter of the test.

The minute tubulation of the shell is perfectly preserved, and may be easily seen in the transverse section under a magnifying power of 100 diameters, as in Pl. XI, fig. 10.
The canal-system of the septa and marginal cord may be traced here and there, though only imperfectly. The transverse section (fig. 10) gives distinct evidence of the existence of the marginal cord, but the details of the structure are obliterated; and in the more highly magnified drawing (fig. 11) indications are not wanting of canals traversing the septa as well as the supplementary skeleton.

Such is a detailed account, as far as can be furnished from the materials available, of the finer specimens of this Carboniferous Nummulite; and in the absence of larger individuals or of fragments indicating their existence, they may fairly be supposed to be adult and fully developed examples of the species. But, in addition to these, a number of smaller individuals have been found apparently belonging to the same form, though neither so uniform in external appearance nor so unmistakably Nummuline in character. One or two are somewhat explanate in their mode of growth, and if mature may pertain to an 'Assilina' variety. Others, smaller still, not much more than a hundredth of an inch in diameter, are unsymmetrical, the convexity of the two faces being unequal and irregular. They probably represent either one of the early stages of the organism or perhaps an arrested condition of growth. Their precise relation to the better developed form must be left for future determination, in the lack of sufficient specimens to work the question fully out.

Referring to D'Archiac and Haime's Monograph, the figures most closely resembling \textit{N. pristina} are those of \textit{N. variolaria}, Sowerby, which represent a Nummulite of somewhat larger dimensions, but remarkably similar in general external characters and septation. Thus the nearest allies, zoologically speaking, of the Carboniferous form are the small thick members of the "radiate" group, regarded by Profs. Parker and Jones as the western modifications of \textit{N. planulata}. \textit{N. variolaria} especially is a poor and variable form whose descent may be easily traced.

It is not a little singular that in the Carboniferous precursor of the Nummulitic group we should have an organism so exactly corresponding in minutest features with its most modern representatives. This cannot be a mere coincidence. Is it not rather a curious exemplification of persistence of essential characters through innumerable ages, whilst modifications of the original, forming collateral "species," have, under favourable circumstances, exhibited an extraordinary development in size and complexity of structure and a corresponding increase in geological importance? Then, as external conditions have become less favourable, little by little, the type has reverted to its primitive state, gradually dwindling in size, and losing by degrees those minor characters which were the easily recognised evidence of higher organization, and in its later history suggesting the lingering stages which precede complete extinction.

\textit{Distribution}.—I can add nothing to what was stated in the paper containing the

\textit{1} 'Descr. des Anim. foss. du groupe Nummulitique de l'Inde,' p. 146, pl. ix, figs. 13, a—g.
original notice of *Nummulina pristina* concerning its distribution. The specimens were almost all found in marly calcareous shale from three distinct bands in a limestone quarry, ("la Carrière du Fond d'Arquet") near Namur, Belgium, pertaining geologically to the Calcaire de Namur. Doubtful specimens have been met with in a somewhat higher bed at Flémalle, near Liége, belonging to the Calcaire de Visé group.

POSTSCRIPT.

Receptaculites as a Carboniferous Foraminifer. — Mr. Lebour has drawn my attention to the fact that Prof. Suess has determined the existence of *Receptaculites oceanii*, d'Eichwald, in company with *Productus fimbriatus*, Sowerby, and *Camarophoria Suessi*, Suess, in the middle member of the Dobschau beds (Hungary), a deposit generally recognised as of Carboniferous age (*vide* Lodin, 'Ann. des Mines,' sér. 7, t. vii, p. 388).

Mr. Carter's researches on Polytrema and its allies.—Whilst the present paper has been in the printer's hands an elaborate contribution to the history of an interesting group of parasitic Foraminifera has appeared in the 'Annals of Natural History' ("On the Polytremae [Foraminifera], especially with reference to their Mythical Hybrid Nature," by H. J. Carter, F.R.S., &c., 'Ann. and Mag. Nat. Hist.,' sér. 4, vol. xvii, p. 185, pl. xiii). The observations therein recorded concerning the cancellated structure of *Polytrema*, as distinct from the labyrinthic developments of the test in the *Lituolida*, have considerable bearing on many of the Carboniferous species, and they have the important recommendation of being based upon the examination of recent specimens of considerable size. It appears from Mr. Carter's investigations that the fact of large sand grains being occasionally built into the test of *Stacheia polytrematoide* would not necessarily separate it from the genus *Polytrema*, but rather would indicate an affinity to that type. Space permits me to do no more than direct the attention of those interested in the subject to Mr. Carter's memoir. The difficulty in the case of the Carboniferous forms most affected by these researches depends, unfortunately, chiefly on the specimens themselves, their comparatively small size, and the changes they have undergone in the process of fossilization.
§ 9. DISTRIBUTION TABLES.

I. Carboniferous—England and Wales (pp. 28—34; 153).
II. do. Scotland (pp. 34—43; 154—156).
III. do. Ireland (pp. 43; 157).
IV. do. Belgium (pp. 44, 45; 157).
V. do. Russia and the Caucasus (pp. 45—47; 158).
VI. do. North America (pp. 47, 48; 158).
VII. Permian—England, Ireland, and Germany (pp. 48—51; 159).
VIII. Carboniferous and Permian—Summary (pp. 160, 161).

General Note.—The columns of the Distribution Tables are, as far as practicable, arranged in geological order, beginning at the lowest. In that referring to England and Wales it has been needful to divide the table into geographical groups, in the absence of data for correlating the beds of areas widely separated. The particulars as to geological position are such as have been furnished by correspondents together with the material collected from each locality. In some cases this information has been given with much more detail than in others, and it is possible that strict geological order may have been disturbed by defective information in one or two instances, but not to an extent to affect the general accuracy of the arrangement.

The Number at the head of each column refers to the paragraph bearing the corresponding number in the “Geological and Geographical” section, pp. 29 to 51.

The occurrence of each species is marked by a cross (×).

As already stated, the condition in which the minute fossils of the Carboniferous beds are found is often such as to render identification difficult. When much surface-corrosion has taken place the specimens have, as a rule, been thrown aside, but when it is present to an extent only sufficient to throw doubt on the determination of the exact species the occurrence is marked in the tables by a note of interrogation (?). In some columns referring to rocks either of subcrystalline texture (like the Calcaire de Namur in the Belgian Table), or containing iron-compounds the oxidation of which disintegrates calcareous shells, such entries are not unfrequent.
<table>
<thead>
<tr>
<th>No.</th>
<th>Localities</th>
<th>NORTHERN COUNTIES</th>
<th>MIDLAND COUNTIES AND NORTH WALES</th>
<th>BRISTOL DISTRICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sacammina Carteri, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lituata naniloideae, Lamark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Haplophragmium rectum, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chinammina antiqua, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Trochammina incert (d'Orbigny)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>— cepitrix, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>— anepa, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>— annularis, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>— gordialis, Jones & Parker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>— fulum (Seminid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Valvina palmyrotrix (Ekhorn)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>— var. compressa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Youngi, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>— var. contraria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>— decurrens, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>— plicata, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>— radis, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Endothyra Bowman, Phillips</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>— ammonoides, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>— globulus (d'Eckhard)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>— crassa, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>— radiata, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>— macella, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>— ordata, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>— var. textile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>— obliqua, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Nodosinella cylindrica, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>— digitata, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>— concina, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>— lingulinae, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Sphaera marginulinae, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>— pupoides, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>— acervis, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>— congesta, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>— polytricaria, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Lagena Parkieri, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>— Howchinaria, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>— Lebouraria, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Textularia gibbosa, d'Orbigny</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>— exima, d'Eckhard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Egeriocras patula, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Archaeoceras Karri, Brady</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Amathystina minutum, nov.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table I. CARBONIFEROUS.—ENGLAND AND WALES.
<table>
<thead>
<tr>
<th>No.</th>
<th>Succissa Carteri, Brady</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lithola Benticana, nov.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Clinoconcha antiqua, Brady</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Trochammina incerta d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>— centripeta, Brady</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>— anceps, nov.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>— annularis, nov.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>— gordialis, P. & J.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>— pusilla (Griultz)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>— Robertoni, nov.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Valvaella pectinata, Ehrenb.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>— var. compressa</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>— Youngi, Brady</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>— var. contraria</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>— decemspina, Brady</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>— plicata, Brady</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>— rudis, nov.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Endothyra Bowmani, Phillips</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>— ammonites, Brady</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>— globulus (Eichwald)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>— crassa, Brady</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>— radiata, Brady</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>— unguiculata, Brady</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>— ornata, Brady</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>— var. tenue, Brady</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>— obliqua, Brady</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>— subtilissima, Brady</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Nodosinella concina, nov.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Stachia marginuloides, nov.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>— fusiformis, nov.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>— papuloides, nov.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>— neovalis, Brady</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>— conchae, nov.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>— polytremoides, nov.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Lagen Parkeri, nov.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>— Bowmani, nov.</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>— Hyalinina, nov.</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Testularia gibba, d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>— eximia, d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Bigenerina patula, nov.</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Archaeocyclus Karreri, Brady</td>
<td></td>
</tr>
</tbody>
</table>

Table II. CARBONIFEROUS.—SCOTLAND.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Lower Carboniferous Limestone Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cement Stone Group</td>
</tr>
<tr>
<td></td>
<td>Lower Carboniferous or Calcareous Sandstone Series</td>
</tr>
</tbody>
</table>

Carboniferous Limestone Series.

Carboniferous.
<table>
<thead>
<tr>
<th>No. 2 Limestone (Midlothian Series)</th>
<th>Ditto (lower layer of shale in situ)</th>
<th>Ditto (upper layer of shale in situ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditto (shale between the beds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditto (shale between the beds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shale above No. 2 Limestone (Midlothian Series)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distribution Tables — Table II (continued)

- Fullarton Quarry.
- Magazine Lime Works, near Pathhead.
- Brunston Colliery.
- Kidlaw, near Gifford.
- Dunbar.
- Mount Lothian Quarry.
- Currie Lee, near Gorebridge.
- Bent's Quarry, near Carlops.
- Cousland Quarry, near Dalkeith.
- Blinkbonny Quarry.
- Carlops Quarry.
- Brunston Colliery.
- Salton Lime Works.
- East Salton Quarry.
- Murrayfield Pit.
- Burlage Quarry.
- East Barns Quarry.
- Splimmersford Quarry, near Salton Hall.
- Lampland Quarry, near Pathhead.
- Gleniston Quarry.
- Sunnybank Quarry.
- Charleston Quarry.
- Rosecobb Quarry, near Dumfermline.
- Corrieburn, near Kilnyle.
- Hillhead Farm Quarry.
- Head of Mouse Water.
- Heirmyres.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Lower Carboniferous Limestone Group

Upper Carboniferous Limestone Group
Table III. Carboniferous.—Ireland.

<table>
<thead>
<tr>
<th></th>
<th>Carbon</th>
<th>Bunterian</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>126</td>
<td>127</td>
</tr>
<tr>
<td>Valvulina paleotrochus (Ehrb.)</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>— var. compressa</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Endothyra Bowmani, Phillips</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>macellia, Brady</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>ornata, Brady</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>— var. tenuis</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>obliqua, Brady</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Nodosinella lingulinoide, nov.</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Table IV. Carboniferous.—Belgium.

<table>
<thead>
<tr>
<th></th>
<th>Carbon du Fond d'Avesnois</th>
<th>Do 2me couche inférieure</th>
<th>Plateaux, près de Liège</th>
<th>Calcaire de Vixé</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
</tr>
<tr>
<td>Saccamminia Carteri, Brady</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Lituola Benniciana, nov.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Trochamminia gordialis, Jones and Parker</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Valvulina paleotrochus (Ehrenb.) bulloides, nov.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Endothyra globulus (d'Eichwald)</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>crassa, Brady</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>radiata, Brady</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>subtilissima, nov.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Nodosinella digitata, nov. lingulinoide, nov.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Textularia gibbosa, d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Truncatulina carbonifera, nov. Boueana, d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Pulvinulina Broeckiana, nov.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Calcarina ambigu, nov. Nummulina pristina, nov.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Table V. Carboniferous.—Russia and the Caucasus.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
</tr>
<tr>
<td>Lituola Bennieana, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clindacmxina antiqua, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochammina incerta (d’Orbigny)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvulina palesrocrhus (Ehrenb.)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bullaides, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endothyra Bowmani, Phillips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>globulus (d’Eichwald)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textularia gibosa, d’Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eximia, d’Eichwald</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bigenerina patula, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Cristellarla mysteriosa, Ehrenb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Rotale antiqua, Ehrenberg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>†Nodionina rotula, d’Eichwald</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Fide Ehrenberg. † Fide d’Eichwald.

Table VI. Carboniferous.—North America.

<table>
<thead>
<tr>
<th></th>
<th>Southern Iowa</th>
<th>Mouth of Platte River</th>
<th>Southern Indiana</th>
<th>Windover, Nova Scotia</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
</tr>
<tr>
<td>Valvulina palesrocrhus (Ehrb.)</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>decurrens, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>picleta, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bulloides, nov.</td>
<td></td>
<td>x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>rudis, nov.</td>
<td></td>
<td>x x</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Endothyra Bowmani, Phillips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodionina priscilla, Dawson</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Calcarina ambigua, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Fide Ehrenberg. † Fide d’Eichwald.
TABLE VII. PERMIAN.—ENGLAND, IRELAND, GERMANY.

<table>
<thead>
<tr>
<th>No.</th>
<th>Neumark</th>
<th>Durham</th>
<th>Yorkshire</th>
<th>Thuringia</th>
<th>Solars in Wetterau</th>
<th>Durstam</th>
<th>Thuringia</th>
<th>Durstam</th>
<th>Co. Tyrone, Ireland</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trochammina incerta (d'Orbigny)
gordialis, Jones & Parker
pusilla (Geinitz)
milioloides, P., J., & K.
filum (Schmid)
Nodosinella digitata, nov.
Nodosaria radicula (Linnæ)
N. Kingi
N. Kirkbyi
N. Jonesi
N. conferta
N. ovalis
N. citriforins
Subvarietal forms
N. dentalina communis, d'Orbigny
multicostata, d'Orbigny
Textularia triticum, Jones
Jonesi, Brady
multilocularis, Reuss

Köfelschieder
Lower Magnesian Limestone
Zechstein piper
Middle Magnesian Limestone
Dolomite
Upper Magnesian Limestone
Lower. Middle. Upper. Permian.
Table VIII. General Summary of Distribution of Carboniferous and Permian Foraminifera.

<table>
<thead>
<tr>
<th>Foraminifera</th>
<th>England and Wales</th>
<th>Scotland</th>
<th>Ireland</th>
<th>Belgium</th>
<th>Russia, &c.</th>
<th>North America</th>
<th>England</th>
<th>Ireland</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccammina, Sars.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carteri, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithola, Lamarck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nautiloides, Lamarck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bennuana, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haplophragmium, Rons.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectum, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climacamina, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antiqua, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochammina, Parker & Jones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inerta (d'Orbigny)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>centrifuga, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anceps, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>annularis, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gordialis, Jones & Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pasilla (Gehlitz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>millailoides, P., J., & K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robertsoni, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>filum (Schmid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvulina, d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palustrochus (Ehrenb.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. compressa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Youngi, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. contraria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decurvatus, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plicata, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bulboides, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rudis, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endotheca, Phillips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowman, Phillips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ammonoides, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>globulus (d'Eichwald)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erassia, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radiata, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maccelia, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ornata, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. tenaxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>obliqua, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subtilissima, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodosinella, gen. nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>digitata, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cylindrica, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gracilis (Dawson)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>concinna, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linguloides, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table continues with more entries and columns for different regions and periods, detailing the distribution of various foraminiferal species.
Table VIII (continued).

<table>
<thead>
<tr>
<th></th>
<th>English and</th>
<th>Scotland</th>
<th>Ireland</th>
<th>Belgium</th>
<th>Russia, &c.</th>
<th>North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRIBUTION TABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stacheia, gen. nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>marginulinoides, nov.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>fusiformis, nov.</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>papoideus, nov.</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acervalis, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>congesta, nov.</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>polytrenatoideus, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagenia, Walker & Jacob.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parkeriana, nov.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Howchiniana, nov.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lebouriana, nov.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodosaria, Lamarck:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radicula (Linné)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dentalina, d'Orbigny:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>communis, d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>multilocostata, d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textularia, Deprone:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gibbosa, d'Orbigny</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extima, d'Eichwald</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, Brady</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>triticius, Jones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>multilocularis, Rentz</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bigenerina, d'Orbigny:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>patula, nov.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truncatulina, d'Orbigny:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbonifera, nov.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boneana, d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulvinulina, Parker & Jones:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broeckiana, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcarea, d'Orbigny:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ambigua, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeodiscus, Brady:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karreri, Brady</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphistegina, d'Orbigny:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minuta, nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nummulina, d'Orbigny:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pristina, Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INDEX.

** The Synonyms are printed in Italics.

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMMODISCUS infimus, Bornemann; see Trochammina incerta (d'Orbigny)</td>
<td>145</td>
</tr>
<tr>
<td>AMPHISTEGINA, d'Orbigny</td>
<td>146</td>
</tr>
<tr>
<td>minuta, Brady</td>
<td></td>
</tr>
<tr>
<td>ARCHÆDISCUS, Brady</td>
<td>142</td>
</tr>
<tr>
<td>Karreri, Brady</td>
<td>142</td>
</tr>
<tr>
<td>BIGENERINA, d'Orbigny</td>
<td>136</td>
</tr>
<tr>
<td>patula, Brady</td>
<td>136</td>
</tr>
<tr>
<td>CALCARINA, d'Orbigny</td>
<td>141</td>
</tr>
<tr>
<td>ambigua, Brady</td>
<td>141</td>
</tr>
<tr>
<td>CLIMACAMMINA, Brady</td>
<td>67</td>
</tr>
<tr>
<td>antiqua, Brady</td>
<td>68</td>
</tr>
<tr>
<td>CORNUSPIRA cretacea, Brady</td>
<td>127</td>
</tr>
<tr>
<td>cretacea, var. irregularis, Reuss; see Trochammina incerta</td>
<td></td>
</tr>
<tr>
<td>granulosa, Terquem; see Trochammina incerta</td>
<td></td>
</tr>
<tr>
<td>Hoernesi, Karrer; see Trochammina incerta</td>
<td></td>
</tr>
<tr>
<td>infra-oolithica, Terquem; see Trochammina incerta</td>
<td></td>
</tr>
<tr>
<td>oolithica, Schwager; see Trochammina incerta</td>
<td></td>
</tr>
<tr>
<td>DENTALINA, d'Orbigny</td>
<td>127</td>
</tr>
<tr>
<td>communis, d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>Kingi, Jones; see Dentalina multicostata</td>
<td></td>
</tr>
<tr>
<td>multicostata, d'Orbigny</td>
<td>129</td>
</tr>
<tr>
<td>Permiana, Jones; see Dentalina communis</td>
<td></td>
</tr>
<tr>
<td>priscilla, Dawson; see Nodosinella priscilla (Dawson)</td>
<td></td>
</tr>
<tr>
<td>ENDOHYRA, Phillips</td>
<td>90</td>
</tr>
<tr>
<td>ammonoides, Brady</td>
<td>94</td>
</tr>
<tr>
<td>Bowmanii, Phillips</td>
<td>92</td>
</tr>
<tr>
<td>Bowmanni, Phillips; see Endothyra Bowmanii</td>
<td></td>
</tr>
<tr>
<td>crassa, Brady</td>
<td>97</td>
</tr>
<tr>
<td>globulus, Eichwald</td>
<td>95</td>
</tr>
<tr>
<td>macella, Brady</td>
<td>98</td>
</tr>
<tr>
<td>obliqua, Brady</td>
<td>100</td>
</tr>
<tr>
<td>ornata, Brady</td>
<td>99</td>
</tr>
<tr>
<td>ornata, var. tenuis, Brady</td>
<td>100</td>
</tr>
<tr>
<td>radiata, Brady</td>
<td>97</td>
</tr>
<tr>
<td>subtilissima, Brady</td>
<td>101</td>
</tr>
<tr>
<td>FORAMINITES serpuloides, King; see Trochammina pusilla.</td>
<td>PAGE</td>
</tr>
<tr>
<td>GLOBIGERINIDA, Carpenter</td>
<td>130</td>
</tr>
<tr>
<td>HAPLOPHRAGMIUM, Reuss</td>
<td>66</td>
</tr>
<tr>
<td>" rectum, Brady</td>
<td>66</td>
</tr>
<tr>
<td>INVOLUTA lobata, Brady; see Endothyra Bowmani.</td>
<td></td>
</tr>
<tr>
<td>INVOLUTINA aspera, Terquem; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>" conica, Brady; see Valvulina paleotrochus.</td>
<td></td>
</tr>
<tr>
<td>" crassa, Brady; see Endothyra crassa.</td>
<td></td>
</tr>
<tr>
<td>" incerta, Brady; see Trochammina centriluga.</td>
<td></td>
</tr>
<tr>
<td>" lobata, Brady; see Endothyra Bowmani.</td>
<td></td>
</tr>
<tr>
<td>" macella, Brady; see Endothyra macella.</td>
<td></td>
</tr>
<tr>
<td>" obliqua, Brady; see Endothyra obliqua.</td>
<td></td>
</tr>
<tr>
<td>" radiata, Brady; see Endothyra radiata.</td>
<td></td>
</tr>
<tr>
<td>" recta, Brady; see Haplophragmium rectum.</td>
<td></td>
</tr>
<tr>
<td>" silicea, Terquem; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>" vermiformis, Brady; see Trochammina filum.</td>
<td></td>
</tr>
<tr>
<td>LAGENA, Walker and Jacob</td>
<td>119</td>
</tr>
<tr>
<td>" Howchiniana, Brady</td>
<td>121</td>
</tr>
<tr>
<td>" Lebouriana, Brady</td>
<td>121</td>
</tr>
<tr>
<td>" Parkeriana, Brady</td>
<td>120</td>
</tr>
<tr>
<td>LAGENIDA, Carpenter</td>
<td>119</td>
</tr>
<tr>
<td>LITUOLA, Lamarck</td>
<td>61</td>
</tr>
<tr>
<td>" Bennieiana, Brady</td>
<td>64</td>
</tr>
<tr>
<td>" nautiloides, Lamarck</td>
<td>63</td>
</tr>
<tr>
<td>LITUOLIDA, Carpenter</td>
<td>56</td>
</tr>
<tr>
<td>LITUOLITES difformis, Lamarck; see Lituola nautiloides.</td>
<td></td>
</tr>
<tr>
<td>" nautiloides, Lamarck; see Lituola nautiloides.</td>
<td></td>
</tr>
<tr>
<td>MILIOLa ? pusilla, Howse and Kirkby; see Trochammina pusilla.</td>
<td></td>
</tr>
<tr>
<td>ORBIS infimus, Strickland; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>OPERCULINA cretaeae, Reuss; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>" incerta, d'Orbigny; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>" lusiana, Brauns; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>NODOSARIA, Lamarck</td>
<td>123</td>
</tr>
<tr>
<td>" citriformis, Schmid; see Nodosaria radicula.</td>
<td></td>
</tr>
<tr>
<td>" communis, d'Orbigny; see Dentalina communis.</td>
<td></td>
</tr>
<tr>
<td>" conferta, Schmid; see Nodosaria radicula.</td>
<td></td>
</tr>
<tr>
<td>" dentalina, Lamarck; see Dentalina communis.</td>
<td></td>
</tr>
<tr>
<td>" duplicans,? Richter; see Nodosaria radicula.</td>
<td></td>
</tr>
<tr>
<td>" fusuliniformis? McCoy; see Saccammina Carteri.</td>
<td></td>
</tr>
<tr>
<td>" Geinitzi, Reuss; see Nodosaria radicula.</td>
<td></td>
</tr>
<tr>
<td>" Jonesi, Richter; see Nodosaria radicula.</td>
<td></td>
</tr>
<tr>
<td>" Kingi, Reuss; see Nodosaria radicula.</td>
<td></td>
</tr>
<tr>
<td>" Kirkbyi, Richter; see Nodosaria radicula.</td>
<td></td>
</tr>
<tr>
<td>" ovalis, Schmid; see Nodosaria radicula</td>
<td></td>
</tr>
<tr>
<td>" radicula (Linne)</td>
<td>124</td>
</tr>
<tr>
<td>" subacicula? Richter; see Nodosaria radicula.</td>
<td></td>
</tr>
<tr>
<td>INDEX.</td>
<td>PAGE</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>NODOSARINA, Parker and Jones</td>
<td>122</td>
</tr>
<tr>
<td>NODOSINELLA, Brady</td>
<td>102</td>
</tr>
<tr>
<td>" concinna, Brady</td>
<td>106</td>
</tr>
<tr>
<td>" cylindrica, Brady</td>
<td>104</td>
</tr>
<tr>
<td>" digitata, Brady</td>
<td>103</td>
</tr>
<tr>
<td>" linguloides, Brady</td>
<td>106</td>
</tr>
<tr>
<td>" priscilla (Dawson)</td>
<td>105</td>
</tr>
<tr>
<td>NONIONINA globulus, d'Eichwald; see Endothyra globulus.</td>
<td></td>
</tr>
<tr>
<td>NUMMULINIDA, Carpenter</td>
<td>142</td>
</tr>
<tr>
<td>NUMMULINA, d'Orbigny</td>
<td>147</td>
</tr>
<tr>
<td>" pristina, Brady</td>
<td>149</td>
</tr>
<tr>
<td>PULVINULINA, Parker and Jones</td>
<td>139</td>
</tr>
<tr>
<td>" Broeckiana, Brady</td>
<td>140</td>
</tr>
<tr>
<td>SACCAMMINA, Sars</td>
<td>56</td>
</tr>
<tr>
<td>" Carteri, Brady</td>
<td>57</td>
</tr>
<tr>
<td>SERFULA filum, Schmid; see Trochammina filum.</td>
<td></td>
</tr>
<tr>
<td>" pusilla, Geinitz; see Trochammina pusilla.</td>
<td></td>
</tr>
<tr>
<td>" Roessleri, Schmid; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>SPIRILLINA arenacea, Williamson; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>" cretacea, Jones; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>" infima, Jones; see Trochammina incerta.</td>
<td></td>
</tr>
<tr>
<td>" pusilla, Jones; see Trochammina pusilla.</td>
<td></td>
</tr>
<tr>
<td>SPIROBINA nautiloides, d'Orbigny; see Lituola nautiloidea.</td>
<td></td>
</tr>
<tr>
<td>STACHEIA, Brady</td>
<td>107</td>
</tr>
<tr>
<td>" acervalis, Brady</td>
<td>116</td>
</tr>
<tr>
<td>" congesta, Brady</td>
<td>117</td>
</tr>
<tr>
<td>" fusiformis, Brady</td>
<td>114</td>
</tr>
<tr>
<td>" marginulinoides, Brady</td>
<td>112</td>
</tr>
<tr>
<td>" polytrematoides, Brady</td>
<td>118</td>
</tr>
<tr>
<td>" pupoides, Brady</td>
<td>115</td>
</tr>
<tr>
<td>TETRATAXIS conica, Ehrenberg; see Valvulina paleotrochus.</td>
<td></td>
</tr>
<tr>
<td>TEXTILARIA eximia, d'Eichwald</td>
<td>132</td>
</tr>
<tr>
<td>" lagenosa (?), Ehrenberg; see Textularia gibbosa.</td>
<td></td>
</tr>
<tr>
<td>" palaeotrochus, Ehrenberg; see Valvulina paleotrochus.</td>
<td></td>
</tr>
<tr>
<td>" recurvata (?), Ehrenberg; see Textularia gibbosa.</td>
<td></td>
</tr>
<tr>
<td>TEXTULARIA, Defrance</td>
<td>130</td>
</tr>
<tr>
<td>" antiqua, Brady; see Climacamina antiqua.</td>
<td></td>
</tr>
<tr>
<td>" cuneiformis, Jones; see Textularia Jonesi.</td>
<td></td>
</tr>
<tr>
<td>" eximia, d'Eichwald</td>
<td>132</td>
</tr>
<tr>
<td>" gibbosa, d'Orbigny</td>
<td>131</td>
</tr>
<tr>
<td>" tritieum, Jones</td>
<td>134</td>
</tr>
<tr>
<td>" Jonesi, Brady</td>
<td>133</td>
</tr>
<tr>
<td>" multilocularis, Reuss</td>
<td>135</td>
</tr>
<tr>
<td>TROCHAMMINA, Parker and Jones</td>
<td>69</td>
</tr>
<tr>
<td>" anceps, Brady</td>
<td>76</td>
</tr>
<tr>
<td>" annularis, Brady</td>
<td>76</td>
</tr>
<tr>
<td>" centrifuga, Brady</td>
<td>74</td>
</tr>
<tr>
<td>Species</td>
<td>Authors</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>TROCHAMMINA</td>
<td></td>
</tr>
<tr>
<td>gordialis, Jones and Parker</td>
<td></td>
</tr>
<tr>
<td>filum (Schmid)</td>
<td></td>
</tr>
<tr>
<td>incerta (d'Orbigny)</td>
<td></td>
</tr>
<tr>
<td>milioloides, Jones</td>
<td></td>
</tr>
<tr>
<td>pusilla (Geinitz)</td>
<td></td>
</tr>
<tr>
<td>proteus, Karrer; see T. gordialis</td>
<td></td>
</tr>
<tr>
<td>Robertsoni, Brady</td>
<td></td>
</tr>
<tr>
<td>squamata, Jones and Parker; see T. gordialis</td>
<td></td>
</tr>
<tr>
<td>squamata, var. gordialis, Parker and Jones; see T. gordialis</td>
<td>137</td>
</tr>
<tr>
<td>TRUNCATULINA, d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>Boueana, d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>carbonifera, Brady</td>
<td></td>
</tr>
<tr>
<td>ROTALIA Baileyi, Hall; see Endothyra Bowmani</td>
<td></td>
</tr>
<tr>
<td>VALVULINA, d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>bulloides, Brady</td>
<td></td>
</tr>
<tr>
<td>decurrens, Brady</td>
<td></td>
</tr>
<tr>
<td>paleotrochus, Ehrenberg</td>
<td></td>
</tr>
<tr>
<td>paleotrochus, var. compressa, Brady</td>
<td></td>
</tr>
<tr>
<td>plicata, Brady</td>
<td></td>
</tr>
<tr>
<td>rudis, Brady</td>
<td></td>
</tr>
<tr>
<td>Youngi, Brady</td>
<td></td>
</tr>
<tr>
<td>Youngi, var. contraria, Brady</td>
<td></td>
</tr>
<tr>
<td>WEBBINA acervalis, Brady; see Stacheia acervalis</td>
<td></td>
</tr>
</tbody>
</table>
PLATE I.

Figs. 1—7. Saccammina Carteri, Brady. (Page 57.)

Fig. 1. A piece of Saccammina-limestone from Elfhills, Northumberland, natural size. The upper portion of the figure shows a weathered surface, the lower a fresh fracture. The white spots on the latter indicate the tufts of crystals which often occupy the interior of the chambers.

Figs. 2, 3. Detached segments. Natural size.

Fig. 4. Polished section of fossil Molluscan Shell found by Mr. F. M. Balfour on the coast about two miles and a half east of Dunbar. The interior contains a string of segments of Saccammina lying in situ. Natural size.

Fig. 5. A broken segment, showing the labyrinthic structure of the inner surface of the test, and the crystalline calcareous mass occupying the interior. Magnified 15 diameters.

Fig. 6. Tangential section of the test exhibiting the arenaceous structure, both of the compact exterior and of the looser labyrinthic portions. × 70 diam.

Fig. 7. One of the scars, formed of a series of concentric rings, frequently seen on the exterior of the segments. × 30 diam.

Figs. 8—11. Lituola Bennieana, nov. (Page 64.)

Figs. 8, 9. Lateral and periphero-lateral aspects. The small dark spots having somewhat the appearance of perforations are embedded sand-grains of nearly uniform size. The irregular depressions on the face of the large terminal chamber, in fig. 9, probably represent the position and form of the pores constituting the general orifice. × 20 diam.

Fig. 10. Cast of the interior of a smaller specimen. × 30 diam.

Fig. 11. Transparent section of a small portion of the test, highly magnified, illustrating the composite, arenaceous structure of the wall, and the labyrinthic interior. × 100 diam.
CARBONIFEROUS FORAMINIFERA
PLATE II.

Figs. 1—9. Climacammina antiqua, Brady. (Page 68.)

Figs. 1—5. Specimens illustrating general external characters, septation, apertures, &c. Magnified 30 diameters.

Figs. 6, 7. Casts of terminal chambers of small cylindrical specimens with their general apertures. \(\times 30 \) diam.

Fig. 8. Transparent longitudinal section, showing apertures, septa, and general structure. \(\times 30 \) diam.

Fig. 9. Portion of the same section, more highly magnified, to show the arenaceous structure of the test and the partial filling of the chambers with cancelled labyrinthic ingrowths. \(\times 200 \) diam.

Figs. 10—14. Trochammina incerta (d'Orbigny). (Page 71.)

Figs. 10, a, b. Lateral and periphero-lateral aspects. \(\times 60 \) diam.

Figs. 11, a, b. " " \(\times 50 \) diam.

Figs. 12, 13. Lateral aspect. \(\times 50 \) diam.

Fig. 14. Transparent section of test highly magnified, showing its very finely sub-arenaceous structure. \(\times 200 \) diam.

Figs. 15—20. Trochammina centrifuga, Brady. (Page 74.)

Figs. 15—18. Lateral aspect, illustrating range of variation in general external features. \(\times 70 \) diam.

Fig. 19. Periphero-lateral aspect. \(\times 70 \) diam.

Fig. 20. Transparent horizontal section, showing the simple tubular character of the test and the absence of any true septa. \(\times 70 \) diam.
Plate II.

CARBONIFEROUS FORAMINIFERA.
PLATE III.

Figs. 1—3. **Trochammina gordialis**, *Jones and Parker*. (Page 77.)
Figs. 1, 2. From Carboniferous specimens. Magnified 100 diameters.
Fig. 3.

Figs. 4, 5. **Trochammina pusilla** (*Geinitz*). (Page 78.)
Fig. 4. From a Carboniferous specimen. \(\times 50 \) diam.
Fig. 5. From a Permian specimen, after Kirkby. \(\times 20 \) diam.

Figs. 6, 7. **Trochammina robertsoni**, *nov.* (Page 80.)
From Carboniferous specimens. \(\times 100 \) diam.

Fig. 8. **Trochammina aniceps**, *nov.* (Page 76.)

- **a** Lateral, **b** periphero-lateral aspect. From a Carboniferous specimen. \(\times 70 \) diam.

Figs. 9, 10. **Trochammina annularis**, *nov.* (Page 76.)
Carboniferous specimens. \(\times 100 \) diam.

Figs. 11—15. **Trochammina melooides**, *Jones, Parker, and Kirkby*. (Page 79.)
Figs. 11—13, lateral, 14, 15 periphero-lateral aspects. From Permian specimens; after Kirkby. \(\times 20 \) diam.

Fig. 16. **Trochammina filum** (*Schmid*). (Page 81.)
Copied from Dr. Schmid’s figure from a Zechstein (Permian) specimen. Magnifying power not stated.

Figs. 17, 18. **Valvulina decurrens**, *Brady*. (Page 87.)
Fig. 17. **a** superior lateral, **b** periphero-lateral aspect.
Fig. 18. Superior aspect of a weathered and corroded specimen; the septa obliterated on the exposed surface. \(\times 50 \) diam.

Figs. 19, 20. **Valvulina rudis**, *nov.* (Page 90.)
Fig. 19. **a** superior, **b** peripheral, **c** inferior aspect. \(\times 50 \) diam.
Fig. 20. Horizontal section, showing the subdivision of the interior into small, irregular, angular chamberlets. \(\times 50 \) diam.
Plate III.

CARBONIFEROUS and PERMIAN FORAMINIFERA.
PLATE IV.

Figs. 1—4. Valvulina palæotrochus (Ehrenberg). (Page 83.)
Fig. 1, a superior, b peripheral, c inferior aspect. Magnified 45 diameters.
Fig. 2. Adherent specimen. × 45 diam.
Fig. 3. Transparent perpendicular section. × 40 diam.
Fig. 4. Horizontal section near the middle of the test. × 40 diam.

Fig. 5. Valvulina palæotrochus, var. compressa, Brady. (Page 85.)
a periphero-lateral, b inferior aspect. × 40 diam.

Figs. 6, S, 9. Valvulina Youngi, Brady. (Page 86.)
Fig. 6. a periphero-lateral, b superior aspect. × 45 diam.
Fig. 8. Perpendicular section, showing subdivision into chamberlets. × 40 diam.
Fig. 9. Horizontal section near the middle of the test. × 40 diam.

Fig. 7. Valvulina Youngi, var. contraria, Brady. (Page 87.)
Fig. 7. a periphero-lateral, b inferior aspect. × 40 diam.

Figs. 10, 11. Valvulina plicata, Brady. (Page 88.)
Fig. 10. a superior, b inferior, c peripheral aspect. × 70 diam.
Fig. 11. Young specimen. × 70 diam.

Figs. 12—15. Valvulina bulloides, nov. (Page 89.)
Fig. 12. a superior, b inferior, c peripheral aspect. Specimen from the Upper Coal-measures of Iowa, U.S.A. × 50 diam.
Fig. 13. a superior, b inferior aspect. Specimens from the Calcaire de Namur, Belgium. × 100 diam.
Figs. 14, 15. Horizontal sections of American specimens. × 100 diam.
CARBONIFEROUS FORAMINIFERA.
PLATE V.

Figs. 1—4. **Endothyra Bowmanii**, *Phillips*. (Page 92.)
 Figs. 1, 2 a lateral, 2 b periphero-lateral aspect. English Carboniferous specimens. Magnified 50 diameters.
 Fig. 3. Subcarboniferous specimen from Southern Indiana. × 30 diam.
 Fig. 4. Horizontal section. × 50 diam.

Figs. 5, 6. **Endothyra ammonoides**, *Brady*. (Page 94.)
 Fig. 5. a lateral, b periphero-lateral aspect. × 60 diam.
 Fig. 6. Portion of horizontal section, from a photograph. × 100 diam.

Figs. 7—9. **Endothyra globulus** (*d'Eichwald*). (Page 95.)
 Fig. 7. a lateral, b periphero-lateral aspect. × 50 diam.
 Fig. 8. Young specimen. × 50 diam.
 Fig. 9. Cast of interior of a large specimen. × 50 diam.

Figs. 10—12. **Endothyra radiata**, *Brady*. (Page 97.)
 Figs. 10, 11 a, 12. Lateral aspect. 11 b. Periphero-lateral aspect. × 50 diam.

Figs. 13, 14. **Endothyra macella**, *Brady*. (Page 98.)
 Fig. 13. a lateral, b periphero-lateral aspect. × 30 diam.
 Fig. 14. Smaller specimen. × 50 diam.

Figs. 15—17. **Endothyra crassa**, *Brady*. (Page 97.)
 Fig. 15. Lateral aspect.
 Figs. 16, 17. Anterior and posterior peripheral aspects. The three drawings of this species are from different specimens. × 30 diam.
Plate V.

1. Plate V.

2. Plate V.

3. Plate V.

4. Plate V.

5. Plate V.

6. Plate V.

7. Plate V.

8. Plate V.

9. Plate V.

10. Plate V.

11. Plate V.

12. Plate V.

13. Plate V.

14. Plate V.

15. Plate V.

16. Plate V.

17. Plate V.

CARBONIFEROUS FORAMINIFERA.

H B Brady and A T Hollick del

Hollick lith. Imp Bocquet Paris
PLATE VI.

Figs. 1—4. Endothyra ornata, Brady. (Page 99.)
 Fig. 1. a lateral, b periphero-lateral aspect. Magnified 50 diameters.
 Fig. 2. Young specimen. × 50 diam.
 Fig. 3. Horizontal section of a portion of a mature specimen. × 50 diam.
 Fig. 4. Somewhat anomalous specimen probably of the same form. × 50 diam.

Figs. 5, 6. Endothyra obliqua, Brady. (Page 100.)
 Fig. 5. a anterior lateral, b periphero-lateral aspect. × 30 diam.
 Fig. 6. Posterior lateral aspect. × 30 diam.

Figs. 7, 8. Endothyra ornata, var. tenuis, nov. (Page 100.)
 Fig. 7. a lateral, b periphero-lateral aspect. × 50 diam.
 Fig. 8. Small irregular specimen. × 50 diam.

Fig. 9. Endothyra subtilissima, nov. (Page 101.)
 a lateral, b periphero-lateral aspect. × 70 diam.

Fig. 10. Truncatulina carbonifera, nov. (Page 138.)
 a inferior lateral surface, b superior ditto. × 90 diam.

Fig. 11. Truncatulina Boueana, d'Orbigny. (Page 139.)
 a inferior lateral surface, b superior ditto. × 100 diam.

Fig. 12. Pulvinulina Broeckiana, nov. (Page 140.)
 a superior lateral, b periphero-lateral, c inferior lateral aspect. × 50 diam.

Fig. 13. Calcarina ambiguA, nov. (Page 141.)
 a lateral, b periphero-lateral aspect. × 70 diam.
Plate VI

CARBONIFEROUS FORAMINIFERA.
PLATE VII.

Figs. 1—3. Nodosinella digitata, nov. (Page 103.)
Various Permian specimens—\(a\) lateral aspect, \(b\) end view. Magnified 30 diameters.

Figs. 4—7. Nodosinella cylindrica, nov. (Page 104.)
Figs. 4—6. Various Carboniferous specimens. \(\times 35\) diam.
Fig. 7. Larger specimen partially broken, showing the labyrinthic structure of the test. \(\times 30\) diam.

Figs. 8, 9. Nodosinella priscilla (Dawson). (Page 105.)
Figs. 8, 9. Copied from Dr. Dawson’s figures of Canadian Carboniferous specimens, slightly enlarged. \(\times 10\) diam.
Fig. 10. Doubtful Permian specimen, perhaps more nearly allied to \(N.\ digitata\). \(\times 30\) diam.

Figs. 11—15. Nodosinella concinna, nov. (Page 106.)
Various forms from the Yoredale Rocks of Swaledale. \(\times 50\) diam.

Figs. 24, 25. Nodosinella linguloides, nov. (Page 106.)
Lateral aspect. Carboniferous specimens. \(\times 35\) diam.

Figs. 16—21. Stacheia marginuloides, nov. (Page 112.)
a represents the lateral aspect, \(b\) the superior end-view in all the figures.
Figs. 16—18, 20, 21. \(\times 50\) diam.—Fig. 19. \(\times 35\) diam. All Carboniferous specimens. The terminal segment of fig. 18 is entirely closed in, and the specimen presents no aperture at the superior end.
Fig. 21. Longitudinal section, showing the subdivision of the chambers.

Figs. 22, 23. Straight, compressed specimens, probably of the same species. \(\times 50\) diam. (Page 106.)
CARBONIFEROUS and PERMIAN FORAMINIFERA.
PLATE VIII.

Figs. 1—5. **Lagena Parkeriana**, nov. (Page 120.)
Figs. 1—4. Lateral aspect of various forms.
Fig. 5. End-view showing aperture. Magnified 50 diameters.

Fig. 6. **Lagena Lebouriana**, nov. × 50 diam. (Page 121.)

Fig. 7. **Lituola nautiloidea**, Lamarck. (Page 63.)
 a lateral aspect, b end-view showing the compound aperture. × 20 diam.

Figs. 8, 9. **Haplophragmium rectum**, Brady. (Page 66.)
 Fig. 8. a lateral aspect, b end-view showing the aperture. × 100 diam.
 Fig. 9. Broken specimen. × 70 diam.

Figs. 10, 11. **Bigenerina patula**, nov. (Page 136.)
 Fig. 10. Lateral aspect. × 35 diam.
 Fig. 11. Longitudinal section. × 30 diam. (See also Plate X, figs. 30, 31.)

Figs. 12—16. **Stacheia fusiformis**, nov. (Page 114.)
 Figs. 12, 13. Lateral aspect; fig. 14 end-view. × 50 diam.
 Fig. 15. Longitudinal section. × 50 diam.
 Fig. 16. A portion of the same further enlarged to show more clearly the subdivision of the interior. × 100 diam.

Figs. 17—27. **Stacheia pupoides**, nov. (Page 115.)
 Fig. 17. A compressed variety apparently without central columnar support. × 35 diam.
 Fig. 18. Longitudinal section of the same form. × 35 diam.
 Fig. 19. A portion of the same further enlarged to show more clearly the interior structure. × 100 diam.
 Figs. 20, 21, 23, 24, 25. Lateral aspects of various specimens of the typical form. × 50 diam.
 Fig. 22. Adherent specimen. × 35 diam.
 Figs. 26, 27. Longitudinal sections. × 50 diam.
CARBONIFEROUS FORAMINIFERA
PLATE IX.

Figs. 1—5. *Stacheia congesta*, nov. (Pages 117, 110.)
Figs. 1—4. Lateral aspect, showing the general external characters.
Fig. 5. Transparent longitudinal section.
From Carboniferous specimens. All magnified 50 diameters.

Figs. 6—8. *Stacheia acervalis*, Brady. (Pages 116, 110.)
Carboniferous. \times 40 diam.

Figs. 9—13. *Stacheia polymatroide*, nov. (Pages 118, 110.)
Fig. 9. Specimen growing round a fragment of a Polyzoon. \times 30 diam.
Figs. 10—12. Specimens growing on the surface of Encrinites. \times 20 diam.
Fig. 13. Transverse section showing the general structure and the arrangement of the chambers. \times 70 diam.
CARBONIFEROUS FORAMINIFERA
Figs. 1—5. Lagena Howchiniana, nov. (Page 121.)
 Figs. 1—3. Lateral aspect. Magnified 50 diameters.
 Fig. 4. Double specimen. \(\times 50 \) diam.
 Fig. 5. Vertical section. \(\times 50 \) diam.—All Carboniferous.

Figs. 6—16. Nodosaria radicula (Linne), and its Permian varieties. (Page 124.)
 Fig. 6. Typical form, after Reuss (N. Geinitzi, Rss.).
 Figs. 7, 8. Typical form in matrix of weathered Magnesian Limestone. \(\times 50 \) diam.
 Fig. 9. Transparent longitudinal section of the same. \(\times 50 \) diam.
 Fig. 10. Nodosaria Kirkbyi, Richter, from an original drawing by Dr. R. Richter.
 Fig. 11. — copied from Geinitz’s “Dyas.” \(\times 15 \) diam.
 Fig. 12. — Kingi, Reuss, ditto. \(\times 10 \) diam.
 Fig. 13. — Jonesi, Richter, ditto. \(\times 20 \) diam.
 Fig. 14. — conferta, Schmid, copied from Dr. Schmid’s figure.
 Fig. 15. — ovalis, Schmid, ditto.
 Fig. 16. — citriformis, Schmid, ditto.

Figs. 17, 18. Dentalina communis, d’Orbigny. (Page 127.)
 Fig. 17. From Prof. T. Rupert Jones’s figure in King’s Monograph. \(\times 30 \) diam.
 Fig. 18. Specimen in the matrix after Dr. Schmid. Permian and Zechstein specimens.

Figs. 19. Dentalina multicostata, d’Orbigny. (Page 129.)
 After Jones, in King’s Monograph. Permian. \(\times 30 \) diam.

Figs. 20—22. Textularia Jonesi, Brady. (Page 133.)
 Fig. 20. Specimen from the Permian at Summerhouse, Durham. \(\times 50 \) diam.
 Figs. 21, 22. From original drawings by Dr. R. Richter, from Middle Zechstein specimens. \(\times 25 \) diam.

The Permian Textulariae, whether English or German, are very commonly found partially or entirely split horizontally, so showing the interior.

Fig. 23. Textularia multilocularis, Reuss. (Page 135.)
 Zechstein specimen; copied from Prof. Reuss’s figure in Geinitz’s “Dyas.”

Figs. 24, 25. Textularia triticum, Jones. (Page 134.)
 Fig. 24. After Jones in King’s Monograph. \(\times 25 \) diam.
 Fig. 25. From an original drawing by Dr. R. Geinitz. \(\times 25 \) diam.
 Permian and Zechstein specimens.

Fig. 26. Textularia gibbosa, d’Orbigny. (Page 131.)
 a. Lateral aspect, b. Superior end-view. Carboniferous specimen. \(\times 30 \) diam.

Figs. 27—29. Textularia eximia, d’Eichwald. (Page 132.)
 Fig. 27b. Superior end-view.—All Carboniferous specimens. \(\times 30 \) diam.

Figs. 30, 31. Bigenerina patula, nov. (Page 136.)
 Fig. 30. Lateral aspect. \(\times 30 \) diam.
 Fig. 31. Broken specimen showing labyrinthic interior structure. \(\times 30 \) diam.
 Carboniferous specimens (see also Pl. VIII, figs. 10, 11).
PLATE XI.

Figs. 1—6. Archædiscus Karreri, Brady. (Page 142.)

Figs. 1 a, 2. Lateral aspect. Magnified 38 diameters.
Fig. 1 b. Periphero-lateral aspect. \times 38 diam.
Fig. 3*. Horizontal section. That the shell-wall has no appreciable thickening on the median plane is shown by the outer circlets. \times 38 diam.
Fig. 4. Transverse section, showing the thickening of the walls, especially near the centre, and their extensive tubulation. \times 38 diam.
Fig. 5. Lower portion of same section further enlarged, with indications of two distinct sorts of tubuli, and of a primary shell-wall, distinct from the supplementary thickening. \times 230 diam.
Fig. 6. Part of a transverse section, showing the successive layers formed by the prolongation of the crescentiform edges of the tubulated shelly investment over the lateral surfaces of the test. \times 230 diam.

Fig. 7. Amphistegina minuta, nov. (Page 146.)

a lateral, b periphero-lateral aspect. \times 50 diam.

Figs. 8—11. Nummulina pristina, Brady. (Page 149.)

Fig. 8 a lateral, b periphero-lateral aspect. \times 50 diam.
Fig. 9. Specimen split on the median plane, showing interior arrangement and septation. \times 50 diam.
Fig. 10. Transverse section, showing the somewhat large primordial chamber, the investing character of the alar lobes of the chambers of the spire, and the resulting lamination of the test; also the general tubulation of the shell, and at the lower extremity some indication of the marginal cord. \times 100 diam.
Fig. 11. Small portion of a horizontal section more highly magnified, demonstrating the existence of a canal-system in the septa and peripheral region. \times 200 diam.

* In the lettering of the Plate the 3 has been accidentally omitted; the centre figure on the top row is the one alluded to.
CARBONIFEROUS FORAMINIFERA.

H.B. Brady and A.T. Hollick del

Hollick lith. imp Becquet, Paris.
PLATE XII.

MICROSCOPIC APPEARANCES OF TRANSPARENT SECTIONS OF CARBONIFEROUS AND PERMIAN ROCKS.

Fig. 1. Carboniferous Limestone, Bakewell, Derbyshire, with *Archadiscus Karreri, Textularia*, sp., and *Valvulina*, sp. Magnified 10 diameters.

Fig. 2. Carboniferous Limestone, North Staffordshire, abounding in *Endothyra*, chiefly *E. Bowmanii*. × 10 diam.

Fig. 3. Carboniferous Limestone, Clifton, Bristol. An oolitic or concretional limestone, largely composed of minute, radiated and laminated, calcareous spheroids, sometimes nucleated, in rare cases Foraminifera forming the nuclei. The spheroids are often more closely packed, but it would require larger space to show fully the oolitic character of the rock. The Foraminifera are only represented in the drawing by a single specimen of *Textularia* and a few *Endothyra*. × 10 diam.

Fig. 4. Carboniferous Limestone, Clifton, Bristol. Amorphous or subcrystalline rock, with *Valvulina paleotrochus, V. decurrens*, and *Archadiscus Karreri*. × 10 diam.

Fig. 5. Carboniferous Limestone, Bangor. A subcrystalline rock, with *Endothyra Bowmanii, E. ammonoides*, and *Textularia*, sp. × 10 diam.

Fig. 6. Saccammina-limestone (Carboniferous). A dark-coloured rock crowded with segments of *Saccammina Carteri*. × 5 diam.

Fig. 7. Upper Magnesian Limestone (Permian), Byers Quarry, Durham. An opaque, very finely sandy rock, with sections of *Dentalina communis* and *Trochammina incerta*. × 20 diam.

Fig. 8. Dark Permian Limestone ('Dunkler Kalkzechstein mit Productus horridus'), Moderwitz, Saxe Weimar. A compact black marble with sections of *Trochammina pusilla* and *Nodosaria radicula*. × 10 diam.

Note.—Figs. 1, 2, and 5 are from specimens kindly lent by Mr. H. C. Sorby, F.R.S. Figs. 3 and 4 are from sections furnished by Mr. W. W. Stoddart, F.G.S., and fig. 6 from one in the collection of Mr. J. Young, F.G.S.
SECTIONS of CARBONIFEROUS and PERMIAN FORAMINIFEROUS ROCKS.
THE

PALEONTOGRAPHICAL SOCIETY.

INSTITUTED MDCCCLXVII.

VOLUME FOR 1876.

LONDON:

MDCCCLXXVI.
A MONOGRAPH

OF THE

BRITISH FOSSIL BRACHIOPODA.

BY

THOMAS DAVIDSON, F.R.S., F.G.S.,

VOL. IV.

PART II. No. 1.

SUPPLEMENT TO THE JURASSIC AND TRIASSIC SPECIES.

Pages 73—144; Plates IX—XVI.

LONDON:
PRINTED FOR THE PALÆONTOGRAPHICAL SOCIETY.
1876.
The first portion of my Monograph of the British Oolitic and Liassic Brachiopoda was published in June, 1851; the second part in August, 1852, and the Appendix in May, 1855. Much additional information has been acquired during the intervening years; and so many fresh species and better specimens have been discovered that it will be necessary to follow the plan adopted in the Cretaceous Supplement, and thoroughly review the subject.

Lyell divides the Jurassic and Triassic formations of Great Britain in the following manner:

\[
\begin{align*}
\text{Oolite.} & \quad \{ \text{Upper Oolite.} & \quad \{ \text{Purbeck Beds.} \\
& \quad \text{Portland Stone and Sand.} & \quad \text{Kimmeridge Clay.} \\
& \quad \text{Coral-rag.} & \quad \text{Oxford Clay.} \\
& \quad \text{Middle Oolite.} & \quad \text{Kelloway Rock.} \\
& \quad \text{Cornbrash and Forest-marble.} & \quad \text{Great or Bath Oolite.} \\
& \quad \text{Great or Bath Oolite.} & \quad \text{Stonesfield Slate.} \\
& \quad \text{Lower Oolite.} & \quad \text{Fuller’s Earth.} \\
& \quad \text{Inferior Oolite.} & \quad \text{Inferior Oolite.} \\
\text{Lias.} & \quad \{ \text{Upper Lias.} \\
& \quad \text{Middle Lias or Marlstone.} \\
& \quad \text{Lower Lias.} \\
\text{Trias.} & \quad \{ \text{Upper Trias.} & \quad \{ \text{Rhaetic Beds.} \\
& \quad \text{Keuper Clays, &c.} \\
\end{align*}
\]

* Between the Coral-rag and Oxford Clay the Lower Calcareous Grit is well developed in Yorkshire.
First Division. Tretenterata (King), genera provided with an anal aperture.

Genus Lingula, Brugière.

1. Lingula ovalis, Sow. Dav., Ool. Mon., p. 98, Pl. 18, figs. 14; Sup., Pl. IX, fig. 1—9; Pl. X, fig. 16 b; Pl. XI, fig. 29.

Lingula ovalis, Sow. Min. Con., Tab. 19, fig. 4, April, 1813.

Since briefly describing this species at p. 98 of the old work, I have, through the kindness of several friends, been able to examine a great many perfect specimens from different localities. The largest example was found by Mr. Blake in the Kimmeridge Clay of Weymouth; it measured one inch in length by seven lines in breadth, but the shell is usually much smaller. The largest specimen from Shotover Hill in the Oxford Museum, for a drawing of which I am indebted to my late and most valued friend Prof. Phillips, measured nine lines in length by five in breadth, the shell being longitudinally oval and slightly acuminated at the beak. The species occurs also in the same formation at Ely, and at Studley Wood. Small specimens were obtained by Mr. Peyton, in 1873, from cores of Kimmeridge Clay, during the Sub-wealden boring at Netherfield, near Battle, at a depth of 295 feet, and were identified by Prof. Phillips. Since that period the shell has been found in great profusion, and in the adult condition, in the same locality, throughout a thickness of over seven hundred feet, where it is associated with Discina latissima. It has also been found by Messrs. Walker and Hudleston in the Kimmeridge Clay of Yorkshire.

It should, however, be remembered that Sowerby’s figured type (Sup., Pl. IX, fig. 1) “was found in a lump of a hard white marly stone among the sand, above the clay stratum, near Pakefield in Suffolk.” I have also a similar specimen from the drift of Norfolk.

L. ovalis is not a rare fossil in the Kimmeridge Clay. It was found in abundance, and for the first time, in France by Mr. Peyton, in a certain bed some two or three feet in thickness, in the Kimmeridge Clay near the shore between Boulogne-sur-Mer and La Crèche. Several species of Lingula from the Palæozoic period and upwards are so similar

2 Bradford Meeting of British Association. In the ‘Hastings and St. Leonards Advertiser’ for October, 1873.
3 ‘Geol. Mag.,’ vol. x, p. 574, 1873. Monsieur de Lorili describes and figures French examples in p. 243, pl. xxv, figs. 27, 28, of his ‘Monographie paléontologique et géologique des étages supérieures de
in external shape to the shell under description that it is difficult to say exactly in what they differ. In 1841 (‘Proc. Zool. Soc.,’ p. 100) Mr. L. Reeve gave the name ovalis to a recent Lingula, whose habitat is the Sandwich Islands. It will be necessary to apply another name to the recent species, which is very remarkable on account of its oval shape and the brilliancy of its verdigris blue-green colour.

2. Lingula Craneæ, Dav. Sup., Pl. IX, figs. 21, 22.

Shell small, longitudinally oval, lanceolate; sides convex, merging either into a sharply acuminated, or obtuse angular beak; front rounded; surface much flattened, and marked with concentric lines of growth.

Length 3, width slightly under 2 lines.

Obs. This species varies a good deal, some specimens being broadest posteriorly, while others are more lanceolate. It does not, however, appear to have much exceeded the dimensions above given.

L. Craneæ occurs in the Oxford Clay of Christian Malford, as well as in the same formation near Chippenham; and at Caledonian Mills, one mile south-east of Newport; good examples may be seen in the British Museum, and in the collection of the School of Mines, in London. I have much pleasure in naming it after Miss Agnes Crane, a talented young geologist.

— — Chapuis et Dewalque. Desc. des foss. des Terrains Sècon- daires de la Province du Luxem- bourg, pl. xxxv, fig. 4, 1855.

— Venusta, Simpson. Fossils of the Yorkshire Lias, p. 130, 1855.

— longo-viciensis, Oppel. Die Jura-Formation, p. 266, 1856.

Shell small, oblong-oval, sides convex, anteriorly broadly rounded, posteriorly tapering into an angular beak, valves thin, slightly convex, and marked with numerous strong concentric lines of growth.

Length 4 lines, by 2 in width.

la formation jurassique des environs de Boulogne-sur-Mer, 1875,’ and states the species to be from the upper beds of his “Etage Virgulien” of Châtillon.
SUPPLEMENT TO THE BRITISH

Obs. Mr. Terquem's description of this Lingula agrees with ours; he also gives as its dimensions 3 lines by 4. His description is unfortunately unaccompanied by a figure; but having received from Mr. Terquem several good typical examples, I have in fig. 25 made up the deficiency. L. longo-viciensis is less lanceolate than L. Cranae, but approaches to it in shape and dimensions. On an internal cast two diverging lines from the beak give it much of the character of Dall's genus Glottidia. I am also informed by Mr. R. Tate that specimens of L. venusta, Simpson, in the Whitby Museum, are characteristic forms of the species.

Position and Locality.—In England L. longo-viciensis is stated by Dr. Oppel to occur in the Alum Shale of Whitby in Yorkshire; but he was not correct in considering the Patella levis, Sow., M. C., Tab. 139, fig. 3, a synonym of the shell under description. According to Mr. Tate, it occurs rather abundantly in the Upper Lias at Long Acres Pit, Skelton; and at Pit Sinking, Saltburn, Sigston Wood, three miles north of North Aterton in Yorkshire. It has also been found by Mr. Blake at Arncliff and Glaizedale in the same county. Mr. Terquem observes that the shell occurs in great abundance, in blocks of limestone, in the Middle Lias of Goreys, Rodange, near Longwy in France, where it is accompanied by Monotis substratiata, Ammonites communis, A. bifrons, and A. Requianus; he has also found some rare examples near the village of Vaux, also at Chanderbourg. It was collected by Messrs. Chapuis and Dewalque in bituminous schists, at Grand-Cour in the province of Luxembourg.

Lingula Davidsoni, Oppel. Die Jura-Formation, p. 109, 1856; and Uber die Brachiopoden des unteren Lias; Abdruck a. d. Zeit-schr. d. Deutschen Geol. Gesellschaft,' p. 536, pl. x, figs. 3 a, b, 1861.

Shell small, narrow, longitudinally oval, depressed, with radial striae and concentric lines of growth.

Length 4, width 2 lines.

Obs. I have never seen this shell, which Dr. Oppel states to occur in the Lias (Am. oxynotus shales) in Gloucestershire. It appears to be nearly allied to Ling. longo-viciensis in shape and dimensions, but separable on account of its radial striae.

There must be added to the Lingulæ above described an imperfectly preserved longitudinally oval species with pointed beak, 6 lines in length by 2½ in width (Pl. IX, fig. 31). It is quoted by the Rev. P. B. Brodie at p. 43 of the 'Proceedings of the Warwickshire Naturalists' and Archaeological Field Club, 1872,' as having been found by him in the

1 'Die Jura-Formation,' p. 266.
Coral Rag, or in a stone band with corals (‘Thecosmilia,’ sp.?) at Wheatley, Oxon. This band is said in ‘Damon’s Guide of Weymouth’ to be the concretionary junction bed, a few inches thick, between the Coral Rag and Kimmeridge Clay. In this the Corals occur, and it is overlain by a stratum of clay charged with fossils of the Kimmeridge Clay. It would not be safe to give a name to this shell from the inspection of a single imperfect specimen. It tapers more at the beaks than is usual with L. ovalis. We figure it here in the hope that a search may be made for better examples.

5. Lingula Metensis, Terquem. Sup., Pl. IX, figs. 27—30.

— — E. Deslongchamps. Études Critiques sur des Brachiopodes nouveaux ou peu connus, p. 25, pl. iv, figs. 5, 6, 1862.

Spec. Char. Shell small, oblong-oval, slightly convex, thickest near the beaks, broadest and rounded anteriorly.

Length 5, width 2 lines.

Obs. Mr. Terquem’s figure of his species is more regularly oblong-oval than the specimens sent me by that gentleman from Metz (fig. 30). In Plate IX, fig. 29, I have reproduced Mr. Terquem’s original illustration, which, as will be noticed, tapers more towards the front than is the case in the larger number of specimens. The shell, figs. 27 and 28, from the Lower Lias, or Oxynotus bed of the Docks, Stonehouse, Gloucester, in the possession of the Rev. P. B. Brodie, and others in the Museum of Practical Geology, have been referred to Terquem’s species. The fossil is also quoted by the Rev. F. Smite from the zone of Am. Bucklandi at Churchdown; and it is mentioned by Mr. R. Tate that a specimen from the Lower Lias in the county of Antrim, in Ireland, is referable to the species under description—a view I can corroborate, having through the kind medium of Mr. Stewart been able to compare the Irish example with some sent to me from Metz by Mr. Terquem. The specimens from Stonehouse have their two valves united, and are in an admirable state of preservation, with a black shiny lustre. Mr. Tate informs me that L. Metensis has some affinity with L. longo-viciensis, but is more ovate than elliptical. Solitary specimens should not be accepted as establishing identity of two species. Mr. Terquem’s types were obtained from a quarry situated above the village of Vallière, near Metz. “On elle caractérise les derniers lits du calcaire a Gryphées arquées, elle est disséminée, les deux valves reunies dans une position perpendiculaire à la direction des couches.” Mr. E. Deslongchamps mentions its occurrence likewise at St. Côme-du-Mont (Manche).

Much uncertainty and difference in opinion has been entertained and expressed as to whether this species is common to the Lias and Inferior Oolite. At p. 127, of the second edition of the *Geology of Yorkshire*, Phillips informs us that his *L. Beanii* was obtained "from the Inferior Oolite sand or dogger at Blue Wick," and it occurs plentifully with *Discina reflexa* at the base of the Inferior Oolite at The Peak in the same county. ¹

In external shape it is oblong-oval, with sides almost parallel, broadly rounded in front, and very obtusely angular at the beak: the surface is marked with numerous concentric lines. Length 11, width 6 lines (Phillips's type). Now, although it appears to be the general character of the shell to have its beak broadly truncated, or rather very obtusely angular, some examples, such as fig. 12, show a much more acuminated beak, and I have noticed every degree of slope between this last and fig. 10.

In the eighth volume of the second series of the *Bulletin of the Geological Society of France*, p. 11, Pl. I, fig. 8, 1850, Mr. Terquem figures and describes, under the designation of *Lingula Voltzii*, a shell, of which we have reproduced the original illustrations (Pl. IX, fig. 13), and which so closely simulates in form, dimensions, and geological position the typical *L. Beanii* of Phillips, that we are at a loss to perceive in what it differs from the English specimens so named; and in addition to this, Mr. Terquem does not fail to inform us that Mr. Voltz had previously referred it to *L. Beanii*.

Subsequently, in his work *Études Critiques sur des Brachiopodes nouveaux ou peu connus*, p. 26, Pl. IV, figs. 7, 8, 1869, Mr. E. Deslongchamps describes and figures under the designation of *Lingula Voltzii* (Terquem) a small *Lingula* obtained from a bed belonging to the Middle Lias, and corresponding to the zone of *Ammonites Davoi* in the Department of the Moselle. He observes that Mr. Voltz and Mr. Davidson have confounded this species with the *Lingula Beanii*, from which it is very distinct on account of its large size, and that Mr. Terquem has perfectly established this separation in his

¹ Stratigraphical position of *Lingula Beanii* in the Blue Wick beds:—
1. Dark friable shale, and ironstone band.
paper "On Some Species of Lingula" ('Bull. Soc. Géol. de France,' 2nd series, vol. viii, pl. i, fig. 2, 1850). I am quite ready to admit that I may perhaps have confounded with the *L. Beanii* some specimens of *Lingula* from the Lias of Somersetshire, figured in my Monograph; but these last cannot be distinguished from *L. Beanii* on account of their much smaller size, as stated by Mr. Deslongchamps, as they sometimes quite equal in dimensions any examples of *L. Beanii* that have come under my observation. Nor are the dimensions given by Mr. Terquem for his *L. Beanii* (height 20, breadth 13 millimètres = 10 lines by 6), very far short of those presented by the generality of specimens of *L. Beanii*, Phillips. It is stated by both Voltz and Terquem that *L. Voltzii* occurs at Griesbach (Lower Alsace), in a sandy limestone forming part of the brown limestone (calcaire à pinnigène), and considered to constitute the highest bed of the Lias, lying immediately under the Inferior Oolite. I have unfortunately not been able to obtain a specimen of Terquem's species, but I received through the kindness of Mr. Bayan, of the School of Mines of Paris, a French specimen identified and described as *L. Beanii* by Terquem; and which, like his figure, seems to differ a good deal from our Yorkshire type of Phillips's species. In fact, the Yorkshire form does not appear to have been understood in France, and Mr. Terquem is quite justified in the complaint he makes, that Phillips did not describe his species.

Lingula Beanii, Dav. Lond. Geol. Journ., vol. i, p. 18, figs. 26—30, 1847; and Ool. Mon., pl. i, figs. 1, 1 a, b, c, d (not *L. Beanii*, Phil.).

— *sacculus*, Chapuis et Dewalque. Desc. des Foss. des Terrains secondaires de la province du Luxembourg, p. 233, pl. xxxv, fig. 4, 1853.

— *Voltzii*, R. Tate. Geol. Mag., vol. vi, p. 556, 1869 (not of Terquem?).

Spec. Char. Shell elongated-oval, rounded in front, moderately convex, sides merging posteriorly by a gentle curve into the acuminated beak; widest anteriorly in some specimens, and especially so near the front. Valves marked with concentric lines of growth. Muscular and other impressions strongly marked in the interior of the valves. Proportions variable; some large examples measured

Length 12, width 6 lines.

Obs. This is probably the form described by Mr. Deslongchamps, and others, as the *L. Voltzii* of Terquem, and believed by Mr. R. Tate to be the same as that described, in 1853, by Messrs. Chapuis and Dewalque under the name of *L. sacculus*. Its beak is
generally much more acuminated than in *L. Beanii*, and its outline more subovate. It occurs throughout the Middle Lias, and assumes very often a black appearance. It was found abundantly, and of large dimensions, in the Marlstone or Middle Lias, at Mickleton Tunnel and Bathford, near Bath. Also in the Middle Lias of Raasay, in the north of Scotland, and was obtained likewise, by Mr. R. Tate, in the zone of *Ammonites spinatus* (Middle Lias), at Kettleness in Yorkshire. It has been collected from several other Liassic localities in England, and upon the Continent; and Mr. Tate would refer the specimens found at Mickleton and Chipping Campden to the zone of *Am. capricornus*. Mr. C. Moore procured a fine specimen (Pl. X, fig. 25) from the Lias at Limpley, Stoke. Messrs. Chapuis and Dewalque state having found their *L. sacculus* in the "Macigno" Lias of Aubange, near Bleid, in the province of Luxembourg; but I have never been able to compare a Belgian specimen with ours, and give the present identification on the authority of Mr. R. Tate.

Genus Discina, Lam.

Patella latissima, J. Sow. Min. Con., vol. ii, p. 85, pl. cxxxix, figs. 1—5, October, 1816.

Spec. Char. Shell orbicular, thin, a little longer than wide. Upper valve slightly conoid, of small elevation; apex subcentral, sometimes faintly radiately striated to some distance from the pointed extremity of the apex; and the whole valve marked with more or less strongly indented concentric ridges, separated by flattened interspaces of greater or lesser breadth. Smaller or pedunculated valve not known. Dimensions variable; Sowerby’s type measured 10 lines in length, by something less in width.

Obs. This species was described by Sowerby, under the designation of *Patella latissima*, from some crushed or flattened casts now in the British Museum (Pl. X, fig. 17, 18). His figure 1 (18 of our Plate) is an incomplete flattened shell or impression on a slab of brown clay, stated to be from Lincolnshire; his fig. 5 (17 of our Plate) is a cast in a light yellowish compact limestone, stated to have been "found in a rolled mass (erratic) among lumps of chalk, sandstone, and gravel, at Pakefield in Suffolk."

Sowerby does not consequently assign any geological age to the rock which contains his species, but he does not neglect to intimate that in the same rock is found his *Lingula ovalis*, a species which geologists subsequently referred to the age of the Kimmeridge-
JURASSIC AND TRIASSIC BRACHIOPODA.

Clay. The correctness of this view is confirmed by the presence of the Lingula and Discina in question side by side, in an admirable state of preservation, in undoubted Kimmeridge Clay at Netherfield, near Battle, in Sussex, and obtained at various depths during the Sub-wealden boring operations in 1873, 1874, and 1875.

In the British Museum may be seen two slabs of Kimmeridge Clay from Braunston, in Northamptonshire, containing the Discina under description. Some very large examples, more or less crushed, were also obtained by the late Mr. C. B. Rose from the Kimmeridge Clay of West Norfolk. Mr. Blake states this shell to have been found in the Upper Kimmeridge of Fulletby in Lincolnshire, and several other localities; also in the Lower Kimmeridge of Oxfordshire with doubt.

At page 134 of his "Catalogue of British Fossils," Prof. Morris quotes this species from the Oxford Clay of Scarborough and Elberston. I am not, however, acquainted with any specimens from that formation.

Spec. Char. Upper or dorsal valve oval, apex elevated, excenctric, outer surface marked with fine concentric lines.

Length about 4 lines, by 3 in breadth.

Obs. As stated by Mr. Blake, this species is easily distinguishable from D. latissima and D. Humphresiana, on account of its much smaller dimensions, more oval form, and not showing any of those radiating lines or striae observable in D. Humphresiana. I have not seen the ventral valve.

D. elevata is said by Mr. Blake to be moderately common in the Lower Kimmeridge of Lincolnshire, but difficult to be obtained in a perfect condition, for when the clay splits, part of the shell always remains on one half, and the rest on the other.

Discina Humphresiana, Sow. E. Desl. Études Critiques sur des Brachiopodes nouveaux ou peu connus, p. 36, pl. vi, figs. 12—14, 1862.

At the period when Sowerby described this pretty species, the upper valve only had been discovered. Since that time, in 1862, Mr. E. Deslongchamps was so fortunate as to find some complete specimens attached to Ostrea deltoidea in the Kimmeridge Clay at
Trouville (Calvados), France, and he was able to isolate one of the specimens so as to show the smaller valve, which was unknown to us in England. In order to complete our description of this species, I have reproduced Mr. E. Deslongchamps figures, and it will be as well to add his description. “Coquille subcirculaire, à test très-mince. Grande valve patelliforme, à sommet pointue, acuminée, ornée d’un très grand nombre de stries rayonnantes irrégulières, dont quelques-uns sont dichotomes. Petite valve concave (convexe dans la figure parce qu’on la voit par l’intérieur), ornée de striées nombreuses, assez régulières, parallèles aux lignes d’accroissement. Foramen en forme de fente ovulaire bordée de deux grosses lèvres.” D. Humphresiana appears to be a rare fossil; but there are specimens in the School of Mines Museum from the Kimmeridge Clay of Studley Wood; others in the Woodwardian Museum, Cambridge, and some indications of the species have occurred in the Kimmeridge Clay taken from a depth of 659 feet at the Sub-wealden boring, Netherfield, near Battle, in Sussex.

Orbicula levis, J. Sow. (in part). Min. Con., tab. cxxxix, fig. 4, October, 1816 (not fig. 3).

As stated at p. 10 of my Oolitic and Liassic Monograph, it seems probable that Sowerby’s two larger figures of Orbicula reflexa were drawn from specimens derived from the Coal-measures of Coalbrook Dale, and belong to a species which subsequently received from Phillips the name of Orbicula nitida. This view seems confirmed, not only on account of the shape and size of the specimens illustrated, but also by Sowerby’s own statement that “a number of these curious shells were found in one or two broken clay-ironstone nodules,” and I possess specimens from the clay-ironstone nodules of Coalbrook Dale which entirely agree with Sowerby’s figures. Sowerby refers also to his species (and it is, no doubt, the one he had in view), a Discina from the Alum-clay near Whitby, as well as a similar Upper-liassic shell very often found attached to Leda (Nucula) ovum. We must, therefore, consider these last-named specimens from the Lias and Inferior Oolite Sands of Yorkshire to represent Sowerby’s species, not including his doubtful figures, to which he assigns no precise formation or locality.

One of Sowerby’s illustrations of Orbicula levis (‘Min. Con.,’ tab. 139, fig. 4) from the Lias is clearly a small immature example of the species under description. The other figure of the so-called O. levis (fig. 3 of ‘Min. Con.’) is stated to have been obtained from the clay (Gault) at Folkestone. Both these specimens are in the British Museum, and I doubt much whether the last named can be even considered a
Brachiopod. At any rate it does not belong to the same species as his fig. 4. Had not two species been confounded under the same designation, the name lavis would have held priority over that of reflexa.

Mr. R. Tate informs me that the shell we now consider to be "the type of the species under description is from the sandy beds surmounting the Upper Lias cement-beds at Blue Wick (Sup., Pl. X, figs. 1, 2). These beds have been classed by Dr. Wright in the Upper Lias; but, as they contain Am. Murchisonia and other characteristic fossils of the Inferior Oolite, we remove them from the Lias. Associated in the same transition strata are Lingula Beavii and Rh. cynocephala.

Phillips and Simpson quote D. reflexa from the Upper Lias. The larger number of specimens from the last-named formation are more or less flattened by pressure, in which condition they agree with Discina (Patella) papyracea of Münster, Goldfuss, Quenstedt, and others, and to which species Oppel referred specimens from the Alum-shale of Whitby. I have no hesitation in placing Patella laevior, Fleming, and Helecion sublavis, d'Orb., among the synonyms of D. reflexa.

I may add that there seems to exist a small concave curve in the posterior margin of the specimens from the Inferior Oolite, which is also observable in some of those from the Lias.

It is possible, as Mr. R. Tate supposes, that the Discina orbicularis and D. Davidsoni, Moore, may be young shells of the species under description; but, as we know so little with reference to them, it may be better to record their existence provisionally on the authority of Mr. Moore.

In addition to Whitby, the Peak, and Cleveland, D. reflexa has been found by Mr. Tate at Lofthouse, Skelton Park Pit, Saltburn, Carlton Moor, Stokesby, &c.

Very fine black, highly polished, and shining examples may also be seen in the British Museum and in that of the School of Mines, attached to Leda ovum from the Upper Lias of Grantham, Lincolnshire. This Discina has also been met with by Mr. Charles Moore in the Upper Lias of Ilminster. Some few examples showing the interior of the smaller valve have been obtained from the Lias of Yorkshire.

12. Discina orbicularis, Moore. Sup., Pl. X, figs. 9, 9 a, b, 10.

I know very little respecting this species (?), which Mr. R. Tate suggests, in vol. vi of the 'Geological Magazine' for December, 1869, may possibly be the young of Discina Holdeni: I may add, more probably the young of D. reflexa. Mr. Charles Moore describes his species in the following words:
“Shell small, orbicular, tapering to an elevated apex, giving the shell a somewhat conical form; margin smooth and rounded. Outer surface of valve smooth, with numerous concentric lines of growth. The inner smooth and very concave. This shell does not appear to have attained a larger size than is indicated in pl. ii, fig. 18 (Sup., Pl. X, fig. 9). It is from the fish-bed and the clays associated therewith in the Upper Lias of Ilminster. By its form it is readily distinguished from any other species.”

I have been favoured with the loan of Mr. Moore’s original examples, and it appears to me that the figure published in the ‘Geologist’ is not quite broad enough at its anterior portion. The exterior surface of the shell is covered with fine, concentric, raised striae. It is about one and a half lines in length and breadth. The five examples lent me by Mr. Moore all agreed in shape and dimensions.

All I know of this species (?) is contained in Mr. Moore’s description:

“Shell small, rather elongate, ovate, conical; vertex much elevated, almost central; anterior margin and sides rounded; posterior margin rather truncated; surface of the shell covered by very fine concentric lines. In general form this shell is not unlike D. Sandersii, Moore, from the Upper Lias Leptaena- and fish-beds, but the encircling striae are much finer. This species is widespread, and evidently not uncommon. It is usually found attached to the interiors of dead shells. In this way I have found it in the body-whorl of a large Cerithium nodulosum, Moore, from the Ammonites-Bucklandi beds of Shepton Mallet, and also attached to the internal chambers of several Nautili, their casts having been retained on the inner stony matrix. It occurs also in the metamorphosed bed on shells at Windsor Hill. Another instance is in the phragmacone of a very large Belemnite at Southerndown, where its concave side occupies the centre of the chamber, giving it at first sight the appearance of the siphuncle of an Orthoceras. The only free specimen, though not perfect, is from the Lower Lias of Bedminster Down.”

Shell minute, conical, almost circular or a little broader than long; apex subcentral; exterior showing numerous irregular concentric scale-like lines.
JURASSIC AND TRIASSIC BRACHIOPoda.

Three not quite perfect examples of this minute shell were found by Mr. Moore in the Inferior Oolite of Dundry, where it appears to be rare.

Of this minute species I have seen but a single example, which was found by Mr. Charles Moore in the Upper Lias near Ilminster.

It is almost circular and conical, with vertex subcentral. The exterior surface shows numerous minute radiating lines or small ribs.

16. Dicicina Holdeni, Tate. Dav., Sup., Pl. X, figs. 12 and 12 a (7, 8 ?), and Pl. XI, fig. 32.

Dicicina, sp., Terquem et Piette. Lias inf. de l'Est de la France, p. 113, tab. xiv, figs. 33, 34, 1865.

"Shell small, regularly conical; base orbicular, the length and breadth in the proportion of about 5 to 4; summit central; test concentrically striated; colour black or brownish-black; yellowish-brown in the young shell. Dimensions of an average-sized specimen—diameter (long) 4.5 and (short) 3.6 millimetres; height 2.3 millimetres. This form is distinguished from other Liassic species by its regularly conical form and central apex; and it is readily separated from D. reflexa, Sow., by the latter character." Geological position.—Ranges from the zone of Ammonites angulatus to that of Ammonites Isex, and throughout the Lower Lias in the east of France."

I have reproduced Mr. R. Tate's description of this species, as he is better acquainted with the species than myself, and because I cannot always discriminate between specimens of this species and of D. reflexa, of the same dimensions, and in which the position of the summit or apex differs considerably. Mr. R. Tate informs me that in his original description he takes for the type of his species figs. 32—34 of pl. xii of Terquem and Piette's Lias inf. de l'Est de la France, that possibly Orbiculoidea Charmassii, d'Orb., Prod. p. 222 is the same shell. "Espèce de moyenne taille, à sommet subcentral, ce qui la distingue de l'O. Babeaua, d'O., Lias, Avallon;" but that there is an insufficiency of description to make the identification absolute. I may also observe that in recent species of
Discina, the shell does not adhere to marine objects by any portion of the substance of its ventral valve (as is the case with Crania), but is attached by the means of a peduncle, which passes through an oval foramen in the ventral valve, and the sculpture observable on the surface of the dorsal valve is likewise reproduced on the ventral one. In some species the lower valve is slightly conical, but in others is very thin, flat, and in some instances gently concave, while the peduncle is so short, that the valve appears to lie close to the object to which it is attached by the whole external surface of its lower valve. Interiorly in recent species there appears to be very little or no flattened or raised margin, but in several fossil forms, such as in Discina reflexa and D. Holdeni, a wide, raised, oblique margin is seen, and the lower valve has quite the appearance, although such may be more deceptive than real, of having adhered to shells and other objects by the entire surface of its lower valve (see Sup., Pl. X, figs. 6, 7, and Sup., Pl. XI, fig. 32 a). This appearance seems the more unaccountable from the fact that the oval perforation for the passage of a peduncle is distinctly visible. In addition to the last named peculiarities, we see on the inner raised surface of the valve regular radiating lines, in addition to the concentric ones, which are in every probability vascular markings.

In all the Irish typical specimens of D. Holdeni that have come under my notice, the shell was more or less crushed. Some examples were attached to a specimen of Astarte deltilabrum from the Lias near Belfast, and I have several similar examples on an Ammonites Valdani from the Middle Lias near Cheltenham. Mr. Beesley has found several specimens attached to a valve of Plagiostoma (Sup., Pl. XI, fig. 32), from the Lower Lias (Ammonites angulatus bed) of Harbury in Warwickshire (cutting of Great Western Railway).

17. Discina Etheridgei, Dav. Sup., Pl. X, figs 20, 20 a, b.

Shell almost circular, or slightly longer than wide, conical, with vertex sub-central; length 12, width 11 lines.

Obs.—Of this species the internal cast of the upper valve only has hitherto been discovered, so that it is not possible to draw up a complete description of the shell. A very fine example, stated to be from the Inferior Oolite of Nailsworth, in the Museum of the School of Mines, shows the muscular and other impressions in an admirable state of preservation.

Shell circular, very conical and elevated, vertex almost central, surface of upper valve ornamented with five or more prominent ring-like ridges. Length and width about 3 lines; elevation of upper valve about 2 lines.

Obs.—I have seen one example of this species, which Mr. Leckenby obtained from the Cornbrash of Scarborough. The type is now in the Woodwardian Museum, Cambridge.

19. Discina Babeana, d'Orb. sp. Dav., Ool. Mon., p. 9, Pl. 1, figs. 2 a, b, and Sup., Pl. X, figs. 21 to 24.

Discina Babeana, E. Desl. Études critiques sur des Brachiopodes nouveaux ou peu connus, p. 22, pl. iv, figs. 1—4, 1862.

At page 14 of the 'Appendix' to the first volume of this work, I intimated that it was possible the Discina Townshendi of Forbes might require to be united with the Discina (Orbiculoides) Babeana of D'Orbigny, notwithstanding that the French examples I had examined were very much more convex than the single British specimen then known. Since that period Mr. Charles Moore has obtained from Rhaetic beds of England some specimens showing a much more elevated upper or unattached valve than is seen in the typical example of the so termed D. Townshendi, and so entirely agreeing in dimensions, shape, and character with D'Orbigny's D. Babeana, that I cannot avoid admitting the French author's priority. D'Orbigny describes his fossil in the following words:—"Espèce de 40 millim. de diamètre, conique, lisse, à sommet lateral." No figure accompanies this very brief description, but the shell is very well known to French Palaeontologists, and is so labelled in all their collections. The diameter of forty millimètres (≈19 lines), given to the French type is exactly that of the type of the British D. Townshendi, and I have noticed that the French species, of which I have several examples before me, varies considerably in the degree of convexity or elevation of its upper or larger valve.

In 1862 Mr. E. Deslongchamps described and illustrated with great minuteness D'Orbigny's species, and intimated at the same time, as I also had previously, that
D. Babeana bears much resemblance to D. Townshendi; he thought, however, that the greater elevation of the larger valve of T. Babeana might perhaps distinguish it from the British shell, but Mr. Moore's discovery of intermediate forms uniting the two obliges us to dispense with the name given to the English fossil by the late Edward Forbes.

In France D. Babeana occurs abundantly in a light yellow friable sandstone, attributed by D'Orbigny to the base of the Lower Lias, near Langres (Haute Marne), and I have it likewise from the same formation at Gortes (Côte d'Or).

These sandstones which some French Geologists place in the "Infra-lias" would correspond to the Rhaetic formation, or to those beds which contain the Avicula contorta.

At the period I described the so-termed Orbicula or Discina Townshendi nothing positive was known by the Geological Survey with respect either to the geological position or locality from whence their magnificent and perfect bivalve example had been obtained; but I was informed by Mr. Walton, and subsequently (on the 16th of January, 1860) by the Rev. P. B. Brodie, that the late Mr. Townshend, who resided at Gloucester had found the specimen, now in the Survey Museum, lying loose among the débris at Fretherne Cliff (Gloucestershire), and that he believed it to have been derived from the Lower Lias; but the specimen not having been found strictly speaking in situ, and as Rhaetic beds occur at the Garden Cliff, some uncertainty may still prevail relative to the age of the formation from whence it was derived. The Rhaetic formation is, according to Lycell and others, composed of beds of passage between the Trias and the Lower Lias, but these have not many species in common.

In the fourth volume of the 'Geological Magazine' (for 1861, p. 99), Mr. C. Moore, whose admirable researches among the Liassic and Rhaetic beds are known to every geologist, informs us that having discovered this species (D. Townshendi) in situ, in the Avicula contorta zone, at the base of the Lias near Taunton, he was enabled to settle its position, and that Professor E. Suegs, of Vienna, informed him that he had likewise obtained the shell in the Rhaetic beds of Austria, in which the Avicula contorta zone is included.

Mr. C. Moore has found the species in beds of Rhaetic age at Vallis, Frome1 (which is a pretty little ravine in the Carboniferous Limestone). The specimens are from a bed of conglomerate, which Mr. Moore believes may once have formed the Rhaetic shore; and they are there associated with the Avicula contorta, as well as with scattered Vertebrata of the Rhaetic period. The bed containing these fossils lies upon the Carboniferous Limestone. Mr. Moore has likewise obtained a smaller valve from rocks of a similar age at Beer Crowcombe.

D. Babeana is the only Brachiopod hitherto discovered in the Rhaetic formation, or Upper Trias, of Great Britain, and is one of the largest and finest species of the genus.

Genus Crania, Retzius.

Nothing new to be added. Upper Lias, Ilminster.

Crania Ponsorti, E. Deslongch. C. Moore, Geologist, vol. iv, p. 98, pl. ii, figs. 9, 10, 1861.

It is quite true that the external surface of the larger number of specimens of C. antiquior is very irregular, rugose, or coarsely wrinkled, but exceptionally well preserved specimens are occasionally found in which the surface is more regularly patelliform, with, here and there, a tendency to rudimentary obscure plication (Sup., Pl. IX, fig. 36), or squamose concentric lamelliform projections, which at times become almost spinose (fig. 37). In this last-named condition the shell would agree with the description given by Mr. E. Deslongchamps to his Crania Ponsorti (Annuaire de l'Institut de France, 1855), to which species (?) Mr. C. Moore has referred the specimen, figs. 36 and 37 of our plate. These two exceptional examples were found in the same bed, accompanied by the common forms of C. antiquior. Mr. Moore does not fail, however, to state, “After examining many examples of the C. antiquior, I have observed in some of them a tendency to become more rugose and to pass gradually into the form represented by the above shell, and I am therefore disposed to consider it (Crania Ponsorti) only as a variety of C. antiquior.” He adds likewise that “the interior of C. Ponsorti appears undistinguishable from the interior of C. antiquior.”

I have never seen French specimens of Mr. E. Deslongchamps' C. Ponsorti, which, according to that distinguished palaeontologist, differ from C. antiquior by their squamose external surface. Both forms, however, are found together in the Great Oolite of St. Aubin-de-Langrune in Normandy, and in England at Hampton Cliff, Bath. I have also met with a very fine example of C. antiquior in the Great Oolite of Ranville, near Caen.

Crania Saundersii, Moore. The Geologist, vol. iv, p. 98, pl. ii, figs. 11, 12, 1861.

Of this species the unattached valve only has been found. The two examples forwarded
to me for examination by Mr. Moore are somewhat square, with rounded angles, exteriorly slightly convex, coarsely and irregularly wrinkled. The interior shows four muscular impressions, the upper pair being widely apart. Mr. C. Moore observes that "by its exterior it would be difficult to distinguish this shell from *C. antiquior* of the Great Oolite of Hampton Cliff, but the interior of the valves differ. In the *C. Saundersii* the two pairs of muscular impressions are more widely separated, the lower pair being much stronger and in shape different from those of the *C. antiquior*, and there is also the absence beneath them of a longitudinal ridge usually present in the latter shell. It is from the Inferior Oolite of Dundry, near Bristol. The shell also occurs in the Inferior Oolite of Minchinhampton, Gloucestershire."

Spec. Char. Shell, subquadrate or rounded, wider than long, more or less conical, vertex almost central, and especially so in the young: surface of the unattached valve irregularly marked by radiating ribs, with wider interspaces between them, the ribs projecting likewise to some distance beyond the margin of the shell in the shape of narrow rounded spines. In the interior are seen four principal muscular impressions, the divaricators being situated close to the posterior margin, while the adductors occupy about the central portion of the shell.

Length 6, breadth 7 lines.

Obs. This species varies a good deal in shape, as may be seen from the figures, and especially so in the number of radiating ridges which ornament its surface. In some specimens there is an approach to symmetry, while in others considerable irregularity prevails. Some young examples are almost circular, while others, aged, are nearly square, with rounded angles. In some perfect specimens measuring five and a half lines in width, the ribs extend two lines in advance of the margin, and their under surface is grooved in all their length.

Six or eight specimens of this beautiful species were found by Mr. C. Moore in the raggy beds of the Inferior Oolite of Dundry.

Cranaia Gumberti, Desl. *Etudes critiques sur des Brachiopodes nouveaux ou peu connus*, p. 21, pl. iii, figs. 6—10, 1862.

In his paper "On Abnormal Conditions of Secondary Deposits," &c., published in the
JURASSIC AND TRIASSIC BRACHIOPODA.

Quarterly Journal of the Geological Society,' vol. xxiii, p. 500, 1867, Mr. C. Moore records this species from the Middle Lias of Whatley; but as he has mislaid the specimen upon which his identification was effected, I cannot do more than repeat his statement.

Mr. Moore did not figure his species, but described it in the following manner:

"Shell rather small, subquadrate, concave, with a rather elevated obtuse vertex; shell-structure smooth; surface with a very irregular wrinkled aspect.

"Fragments of this little Crania are not uncommon; but I have only one moderately perfect, showing the exterior, which is from the Brocastle Liassic conglomerate. It occurs also (but fragmentary) in the Charterhouse Liassic mine in the Lower Lias at Stout's Hill." I regret not having been able to see the specimens upon which this species has been founded. They have been mislaid by Mr. Moore. In his paper in the 'Geological Magazine,' vol. vi, p. 553, December, 1869, Mr. R. Tate refers this species to the zone of Am. angulatus.

Second Division—Clistenterata (King), genera destitute of an anal aperture.

Genus Leptæna, Dalman.

Spec. Char. Shell involute, transversely semicircular, wider than long; ventral valve regularly and uniformly convex, with lateral auricular expansions. Dorsal valve concave, following the curve of the other. Surface smooth, or marked here and there with fine concentric lines of growth. Hinge-line straight. Area narrow in dorsal valve, wider in ventral one, fissure and deltium rather wide and perforated at extremity under the small incurved beak by a minute circular aperture or foramen. The valves articulate by the means of teeth and sockets.
Length of a very large example eight lines, by twelve in breadth, but the shell rarely exceeds ten lines in width, and is usually even smaller.

Obs. This fine species, the largest of the genus hitherto discovered in the Liassic deposits, is at once distinguishable from all the others from that formation by its shape and dimensions. It is exceedingly abundant, and in a perfect state of preservation, in the highest bed of the Upper Lias, a sandy clay, full of fragments of Encrinites, at May in Normandy, where it was first discovered by Mr. Perrier. It was subsequently collected in great numbers in the same locality by Messrs. Deslongchamps, father and son, and by myself, and was admirably described and figured by Mr. Eugene Deslongchamps in his excellent memoir on the Genera *Leptaena* and *Thecidea* from the Jurassic Formation of Calvados. In 1860 a small single dorsal valve was found by Mr. C. Moore in the Upper Lias of Ilminster, where the species appears to be rare. Mr. R. Tate refers this species to both the Middle Lias or Zone of *Am. margaritatus* and the Upper Lias with *Am. bifrons* (*Geol. Mag.*, vol. vi, p. 554).

Mr. Deslongchamps observes that this pretty little species is easily distinguishable from *Leptaena liasiana* by its more elegant shape, uniform curve, and smaller dimensions, the beak also never being perforated. A single specimen showed lateral auricular expansions, but these, being very fragile, were easily broken during the life of the animal or in the process of fossilisation. It occurs but rarely in the Lias of Fontaine-Etoupe-Four, near Caen, in Normandy. In addition to what we have stated with respect to this species at p. 19 of our Oolitic and Liassic Monograph, we may add that Mr. R. Tate quotes the fossil from the Middle Lias zones of *Am. capricornus* and *Am. margaritatus*, and from the Upper Lias zone of *Am. bifrons*.

Leptaena rostrata, E. Desl. Annuaire de l'Institut des Provinces for 1855, p. 52, pl. —, figs. 17, 18, 1855.

Spec. Char. Shell minute, marginate, pear-shaped, or longer than wide: widest about the middle and broadly rounded anteriorly, tapering posteriorly to an almost
pointed beak, perforated at its extremity by a small circular aperture or foramen. Ventral valve uniformly convex, beak almost straight; dorsal valve concave, following the curves of the opposite one: hinge-line narrow, area of the larger or ventral valve triangular, long, and narrow, giving the shell a peculiar straight-beaked appearance. Deltidium triangular. Surface of valves marked by a multitude of exceedingly fine radiating or longitudinal lines, visible only by the aid of a good lens.

Length one or two lines, width less.

Obs. This minute species is at once distinguishable from *Leptena Bouchardii* by its elongated, straight, narrow beak, truncated and pierced at its extremity by a circular aperture, which does not appear to exist in *L. Bouchardii*. It was first discovered by Mr. E. Deslongchamps in the Lias of Fontaine-Etoupe-Four in Normandy, and since then three examples were found by Mr. C. Moore in the Middle Lias of Whatley and Munger; none of the specimens quite attained a line in length.

This interesting little species is rare in the Upper Lias of Ilminster, but more abundant in that of May, near Caen, in Normandy. See also our remarks at p. 15 of the Appendix to vol. i of this work.

Nothing new to be added. It occurs in the Upper Lias or zone of *Am. bifrons*.

Since the publication of my description in June, 1851, Mr. Moore has referred this shell to the genus *Monotis*. It must consequently be removed from the Brachiopoda to the Lamellibranchiata, as will be found stated at p. 15 of the Appendix to vol. i of this Monograph.

This is not a Leptæna, but a shell more nearly allied to Terebratula? Deslongchampsii (see description of that species), and not to Placunopsis, as stated by Mr. R. Tate at p. 550 of the 'Geol. Mag.,' vol. vi, 1864.

Genus Spiriferina, d'Orb.

Spiriferina rostrata, Schloth. ; Sp. Hartmanni, Zieten ; Sp. pinguis, Zieten (not of Sowerby) ; and Sp. verrucosa, Von Buch.

When in 1851 I published my impressions with reference to Spiriferina rostrata and its so-called varieties or variations in shape, I had before me a very large number of specimens of the so-called Sp. rostrata collected by Mr. C. Moore, Mr. Walton, myself, and others, from the Lias of South Petherton, Radstock, Normandy, and many other places; and it appeared to me then, as it still does now, that the shell is very variable in its shape, in the degree of convexity of its valves, dimensions of its area, and incurvation of its beak, and that there exists a gradual tendency in some or in many specimens to the formation of small or slightly defined ribs. This led me to consider Sp. rostrata, Sp. Hartmanni, and Sp. pinguis, Zieten (not Sow.), and perhaps Sp. verrucosa, as varieties or variations in shape of a single species. Since that period Mr. Eugene Deslongchamps has dissented from the view I had taken,¹ and has endeavoured to show that each of the forms above named could be characterised by some definable or definite characters, and especially so with respect to the position or direction assumed by their interior spiral coils. In Sup., Pl. XI, figs. 7, 8, and 10, I have reproduced his drawings for reference. I am really not yet quite satisfied that we have four distinct species in the forms above named; but, as Mr. E. Deslongchamps is so decided in his view upon the subject, I will reproduce the synonyma he gives of each species (?), and solicit the attention of British palæontologists and collectors to a careful examination of those forms attributed to Sp. Hartmanni and Sp. pinguis of Zieten, so as to ascertain whether the characters assigned to them are really persistent, and carried out in our British specimens.²

¹ 'Études critiques sur des Brachiopodes nouveaux ou peu connus,' p. 7, 1862.
² In his paper in the 'Geological Magazine,' vol. vi, p. 552, 1869, Mr. R. Tate states that Sp. ascendens occurs in the Marlstone of Somersetshire; but I am not aware of this shell having been collected from our British strata.
33. Spiriferina rostrata, Schd., sp. Dav. (pars), Ool. Mon., p. 20, Pl. II, figs. 1—6 and 13 to 21 (not figs. 7 to 12, or Pl. III, fig. 1), Sup., Pl. XI, fig. 6.

Terebratulites rostratus, Schloth. Nach. zur Petref., pl. xvi, fig. 4, 1822.
Spirifer rostratus, Zieten. Die Versteinerungen Würt., p. 38, fig. 3, 1832.
— rostratus, Quenst. Das Floëgebirge Würtemb., p. 186, 1843.
Spirifer punctatus, Buchman. Geol. of Chelt., pl. x, fig. 7, 1845.
— — Bronn. Index Palacont., p. 1181, 1849.
— — Quenstedt. Der Jura, p. 182, pl. xxii, fig. 25, 1858.
Spiriferina rostrata, E. Desl. Études critiques sur des Brachiopodes nouveaux ou peu connus, p. 10, pl. ii, figs. 7—9, 1862.

Mr. Deslongchamps describes this species as a largish shell, with or without a sinus and mesial fold: lateral portions of the shell smooth and without ribs. Beak short and much incurved, area narrow, about a third of the width of the shell. He adds likewise, that the spiral appendages are almost horizontal, and do not direct themselves upwards into the cavity of the beak (Sup., Pl. X, fig. 6).

Spiriferina rostrata occurs in the Lower, Middle, and Upper Lias, but is especially abundant in the Middle Lias or zones of Ammonites capricornus, Am. margaritatus, and Am. spinosus. Mr. Tawney quotes the fossil from the Lower and Middle Lias in the neighbourhood of Radstock. It occurs in the Middle Lias of Mull and Rassay in the Hebrides. MM. Coquand and De Verneuil found it in the Middle Lias of Molina de Aragon and Maranchon in Spain. It is common in France, and I have it from Piensbach, near Boll, in Germany, &c.

34. Spiriferina Hartmanni, Zieten, sp. Dav., Ool. Mon., p. 22, Pl. II, figs. 10—12; and Sup., Pl. XI, fig. 7.

Spirifer Hartmanni, Zieten. Die Verst. Würtemberg, pl. xxxviii, fig. 1, 1838.
Delthyris — Quenstedt. Das Floëgebirge Würtemb., p. 1811, 1843.
— — E. Desl. Études critiques sur des Brachiopodes nouveaux ou peu connus, p. 13, pl. ii, figs. 10, 11, 1862.
The only difference between this and the preceding species mentioned by Mr. Deslongchamps seems to consist in the large size of the beak, which is stated to be almost straight in *Sp. Hartmanni*, or but slightly incurved, the area occupying almost the entire width of the shell. The spiral appendages have an upward direction, with their conical extremities curving towards the septum, and thus filling a large portion of the cavity under the beak of the ventral valve, as seen in the figure, Sup., Pl. XI, fig. 7. This species (?) occurs, according to Mr. Deslongchamps, in the Middle Lias of South Petherton, near Ilminster, and especially in the zones of *Ammon. Davœi* and *Am. fimbriatus*. It is found in the localities where *Sp. rostrata* abounds. Mr. Deslongchamps admits that it is sometimes difficult to distinguish it from certain varieties of *Sp. rostrata*; and, were it not for the stated modification in the direction of the spiral coils, I should hesitate very much in admitting, even provisionally, its claim to be a species.

Mr. Deslongchamps informs us that *Sp. Hartmanni* and the preceding species may be collected in almost every part of France where the Middle Lias prevails, but is especially abundant in the neighbourhood of Caen (Évrecy, Curey, Landes, &c.), Milhau in the Aveyron, Avallon (Yonne), &c. Dr. Oppel sent me specimens from Pliensbach, near Boll, in Germany, observing at the same time that the sinus is more deeply excavated in Zieten's figure than in any of his specimens from that locality, and that Zieten was mistaken when he assigned the age of the bed to that of the Oxford Clay.

Spirifer mesoloba, Desl., MS. Soc. Linn. de Normandie, 1837.

Spirifer chilenis, d'Orb. Darwin, South America, p. 267, pl. v, figs. 15, 16, 1846.

— *linguiferoides*, d'Orb. Prodrome 267, pl. v, figs. 17, 18, 1846.

Spiriferina pinguis, d'Orb. Prodrome, p. 221, No. 150, Étage Sinémurien, 1847.

— *ostiolata*, ed. Prodrome 239, No. 228, Étage Linsien (non *Delthyris otiolata*, Zeiten, non *D. otiolata*, Schloth), 1847.

Spirifer tumidus, Quenstedt. Der Jura, p. 80, pl. ix, fig. 7, 1858.

— *pinguis*, E. Desl. Études critiques sur des Brachiopodes nouveaux ou peu connus, p. 15, pl. ii, figs. 1—3, 1862.
In external shape this species (?) bears much resemblance to Sp. rostrata; but, while in the last named the fold is obscurely represented, it is generally sharply defined in the form under description. Then again, while the whole surface of Sp. rostrata is stated to be always smooth, the lateral portions of both valves in Sp. pinguis are covered with numerous radiating simple ribs, the fold and sinus alone remaining smooth. From twenty to forty ribs may be counted on the surface of each valve, and while these are scarcely defined in some specimens, they are strongly marked in others. Not much difference seems to exist in the spines which rise from the surface of this and the two preceding species (?); they are very numerous, short, and slender.

Mr. Deslongchamps informs us moreover that, in addition to the ribs already described, the spiral coils, instead of being almost horizontal, as in Sp. rostrata, form an oblique angle, the conical extremity of each coil lying close to the hinge-line (Sup., Pl. XI, fig. 8). This form appears to occur both in the Lower and Middle Lias, and in localities where the two preceding species are found. It is abundant in the Middle Lias of France, and occurs, though, I believe, but rarely, in the Marlstone or Middle Lias of England. It must not be confounded with Spirifer pinguis of Sowerby, which is a well-known Carboniferous species, and we should have objected entirely to the name being made use of for this liassic shell, had the two not been generically distinct.

36. Spiriferina verrucosa, von Buch, sp. Duv., Ool. Mon. (pars), p. 20, Pl. III, fig. 1; Sup., Pl. XI, figs. 9, 10.

Delthyris verrucosa, von Buch. Petrifications remarq., pl. vii, fig. 2, 1831.
Spirifer verrucosus, Quenstedt. Das Floëgebirge Würtemb., p. 185, 1843.
Spiriferina verrucosa, d'Orb. Prod., p. 221, No. 151, 1849.
Spiriferina verrucosa, Quenstedt. Handbuch der Petrefack., p. 482, tab. 38, figs. 35, 40, 1852.

— — Oppel. Des Mittlere Lias Schwabens, pl. iv, fig. 6, 1853.
Spirifer verrucosus levigatus, Quenstedt. Der Jura, p. 152, pl. xviii, figs. 6 and 14, 1858.

— Plicatus, Quenstedt. Der Jura, p. 152, pl. xviii, fig. 15, 1858.

Spiriferina verrucosa, E. Desl. Études Critiques sur des Brachiopodes nouveaux ou peu connus, p. 17, pl. ii, figs. 4—6, 1862.

The shell of this species appears to be always much smaller than that of Sp. rostrata,
Sp. Hartmanni, and Sp. pinguis, is more pentagonal. There exists also a well-defined mesial fold in the dorsal valve and sinus in the ventral one, with from four to seven small rounded ribs on each of the lateral portions of both valves. The fold is also sometimes marked or longitudinally divided by a shallow groove. The spines which cover the surface of both valves are short, strong, and comparatively less numerous than in the three species already named. The spiral supports approach most in their shape and direction to those of Sp. rostrata, and have a smaller number of coils (Sup., Pl. XI, fig. 10).

Sp. verrucosa is tolerably abundant in the Middle Lias, and occurs in those beds characterised by Waldheimia numismalis. In England it is found in the Marlstone of South Petherton, near Ilminster, and is stated by Mr. R. Tate to characterise the zone of Am. Jamesoni, at Cheltenham, Aston, &c., in North Gloucestershire. It is the Sp. mediævies of Simpson, who quotes it from the Lower Lias of the Peak in Yorkshire. It is mentioned by Bryce and Tate from the Am. armatus and Am. Jamesoni beds of Raasay, in the north of Scotland, also from Hallaig in the island of Skye. In France it is common in the Middle Lias at Metz, Avallon, Besançon, Salins, &c., and is especially abundant in various localities in Normandy. It occurs in the Middle Lias of Pliensbach, near Boll.

Spiriferina Walcotti is stated by Mr. R. Tate to occur in the Lower Lias or Zone of Am. Bucklandi, Am. Turneri, Am. oxynotus, and Am. raricostatus. Also in the Middle Lias or zones of Am. margaritatus and Am. spinatus. Mr. E. B. Tawney, in some interesting notes on the Lias, minutely describes the geological position of Spiriferina Walcotti in the neighbourhood of Radstock, where it is restricted to the Lower Lias. The shell was also collected by Captain E. J. Bedford, R.N., in the Middle Lias shales at Caisaig Bay in the Island of Mull, by Messrs. Bryce and R. Tate, from a similar rock at Hallaig and Raasay in the north of Scotland, and by Mr. J. Thomson from the Middle Lias in the Bay of Lussay, four miles from Bradford in the Island of Skye, as well as in the Island of Pabba. It appears also not to be very rare in the zone of Am. Bucklandi at Redcar, and Robin Hood’s Bay, in Yorkshire. The Spirifer latus of Martin, Sp. recentior and Sp. liasicus, of Simpson, are all considered by Mr. R. Tate as synonyms of Sp. Walcotti.

1 'Geological Magazine,' vol. v, p. 552, Dec., 1869.
2 'Bristol Naturalists’ Society’s Proceedings,' vol. i, part 2, 1874.
38. **Spiriferina oxyptera**, *Buvignier*. Sup., Pl. X, figs. 31, 32.

Spiriferina oxyptera, *Buvignier*. Mém. de la Soc. Philom de Verdun, vol. ii, p. 14, pl. viii, fig. 8, 1843; and Géol. des Ardennes, p. 534, pl. v, fig. 5, 1852.

———— Dav. Annals and Mag. of Nat. Hist., 2nd ser., vol. ix, pl. xv, figs. 5—7, 1852; and Geologist for December, 1862, p. 444, pl. xxiv, figs. 4, 4 a.

———— E. Desl. Études Critiques sur des Brach. nouveaux ou peu connus, p. 67, pl. xi, figs. 6—10, 1863.

Spec. Char. Shell variable in shape, transverse; valves convex, beak more or less produced and incurved; area narrow; deltidium in two pieces; hinge-line considerably exceeding the width of the shell, and prolonged in the shape of pointed wings; surface ornamented by a wide elevated mesial fold in the smaller valve, and corresponding sinus in the larger one, with from four to six ribs on each of the lateral portions of the shell. Structure punctuated and spinose. Dimensions variable:

Length 11, width 19, depth 8 lines.

Obs. This species was described for the first time by Mr. Buvignier, who discovered it in the Liassic beds of Carignan Sachy (Ardennes), where it is stated to be uncommon. It is easily distinguishable by its wing-shaped expansions, recalling many Palæozoic forms in which the hinge-line greatly exceeds the width of the shell. Mr. Tesson found it likewise in the Lias at Fontaine-Étoupe-Four, near Caen, and I was fortunate enough to pick up another very fine example at Croisilles, near Caen. In England, it has been met with in the Middle Liassic or zone of *Am. Jamesoni* at Huntcliff, Saltburn, Coatham,Scar, and Redcar, in Yorkshire, also in the Middle Liassic of the Bay of Caisaig, in the Island of Mull, and by Messrs. Brice and R. Tate, in the zones of *Am. armatus* and *Am. Jamesoni*, at Raassay, in Scotland. It occurs also in the Middle Liassic at Issa, Aragon, Obon, and Josa, in Spain. Mr. Deslongchamps informs us that the spinules which invest its surface are similar to those seen in *Sp. oxygona*.

39. **Spiriferina Signiensis**, *Buv*. Sup., Pl. XI, fig. 11.

Spirifer signiensis, *Buv*. Mém. Soc. Philom de Verdun, t. 2, p. 14, pl. v, fig. 9, 1843; Géol. des Ardennes, p. 534, pl. iv, fig. 9, 1852.

It is with considerable uncertainty that the imperfect specimen found by R. Tate is referred to him to this species. It occurred in the shale bed below the main seam of
ironstone, or zone of *Am. Bucklandi*, at Eston mines, in Yorkshire. I record the presence of this fossil merely in the hope that better examples may be sought for, and its provisional identification made certain.

40. **Spiriferina oxygona**, *E. Desl.* Sup., Pl. XI, figs. 1 to 5.

Spiriferina oxygona, *E. Desl.* Bull. Soc. Linn. de Normandie, vol. iii, pl. iii, figs. 4–10, 1859.

Sp. Char. Shell wider than long. Dorsal valve transversely semicircular; ventral valve much deeper than the opposite one, beak large, entirely straight, and at right angles to the plane of the dorsal valve, or slightly incurved at its extremity. Hinge-line straight; slightly shorter than the greatest width of the shell; area of ventral valve large, flat, and triangular, fissure moderately wide. Surface of valves ornamented with from fourteen to twenty or more angular ribs, divided in the ventral valve by a prominent angular mesial fold, and in the dorsal valve by a wide deepish angular sinus. Numerous small spinules cover the surface of both valves. Proportions very variable; a large example measured 14 lines in length by 22 in width and 13 in depth.

Obs. Mr. Deslongchamps does not appear to have published a complete description of his species, but states that it is easily distinguishable from other Liassic forms by the beak of its ventral valve being completely straight, by its angular ribs, and, lastly, by its general angularity; hence the name *oxygona*. Mr. Deslongchamps' short description is accompanied by eight excellent figures, which agree in every particular with the specimens found in England. In some of the French examples as many as thirty-two ribs may be counted on each valve, and the spines cover in a regular manner every part of the shell with the exception of the area.

Mr. C. Moore appears to have been the first British palæontologist who noticed the presence of this fossil in England; he mentions having found it in the Middle Lias of Whatley. Some very large and fine examples were subsequently discovered by Mr. Beesley in the Marlstone, or near the middle of the *Ammonites spinatus* zone, at King's Sutton, in Northamptonshire, at about four miles south of Banbury. The fossil is stated to be tolerably plentiful at the spot. For a full account of the formation and locality of King's Sutton, see Mr. Beesley's paper in the 'Proceedings of the Warwickshire Naturalists' and Archaeologists' Field Club' for 1872. Mr. Beesley informs me likewise that some specimens have been got at Adderbury, just opposite King's Sutton, on the Oxfordshire side of the river Cherwell, and at Byfield in Northamptonshire. In France the species was discovered by Mr. E. Deslongchamps in the Middle Lias of Fontaine-Etoupe-Four and May in Normandy.

Nothing new. It occurs in the zone of *Am. margaritatus* (Middle Lias), and in that of *Am. bifrons* (Upper Lias). It is a smaller shell than *Sp. oxygona*. I cannot agree with Mr. Whatley, in considering it only a variety of *Sp. Walcottii*.

42. *Spiriferina Deslongchampsii*, Dav. Sup., Pl. XI, fig. 12.

Spec. Char. Shell wider than long; dorsal valve semicircular, moderately convex, mesial fold more or less defined, of small elevation. Ventral valve much deeper than the opposite one; beak rather large, straight or very slightly incurved, and at right angles to the plane of the dorsal valve; sinus shallow, scarcely defined; area triangular, flat, fissure partly arched over by a narrow pseudo-deltidium; hinge-line rather less than the greatest breadth of the shell. Surface of both valves ornamented with from sixteen to thirty rounded ribs, from which rise numerous small hollow spines; the interspaces between the ribs are comparatively smooth.

Proportions variable; width 15, depth 9 or 10 lines.

Obs. When I described this species for the first time in the 'Annals,' the dorsal valve of a single French specimen had been obtained; since then Mr. Eugene Deslongchamps has been able to publish descriptions and drawings of the complete shell from specimens obtained from the Middle Lias of Fontaine-Etoupe-Four, in Normandy. A small number of very good examples were subsequently found by Mr. C. Moore in the Middle Lias of Whatley, so that we are now in a position to completely illustrate this very interesting species. The ribs are somewhat irregular in number and size, and in some examples are hardly defined; a few are sometimes bifurcate, or a shorter rib is interpolated between two simple ones.

Nothing new. It occurs in the zone of *Am. bifrons* in the Upper Lias.
UNCERTAIN GENERA.

The genera to which the three following minute shells should be referred is still a matter of considerable uncertainty. I leave them provisionally under *Spiriferina*, where they have been placed by Mr. Moore, but to which genus in every probability they do not belong. Their extreme minuteness, and the small number of specimens I have been able to examine, makes their study and examination a very difficult matter. It is to be hoped, however, that with time, and under more favorable circumstances, their generic position may be ascertained.

Sp. Char. Shell minute, transversely oval. Sometimes nearly as long as broad, but usually much broader than long; hinge-line slightly shorter than the greatest breadth of shell. Valves moderately convex, without any defined fold and sinus. Dorsal valve semicircular, ventral valve much deeper than the opposite one, beak comparatively large, slightly incurved; area triangular, fissure wide margined laterally by deltoidal plates. Surface of both valves ornamented by eight or ten rounded ribs which commence to rise at some little distance from the extremity of the beak and umbo.

Length a little more than half a line, breadth about one line.

Obs. After very considerable trouble I have been able to make an incomplete and much enlarged drawing of the interior of the dorsal valve (Sup., Pl. XI, fig. 15), in which the widely separated hinge-sockets and muscular impressions are delineated. Mr. Moore writes me that he is disposed to think that this form will have to be classed in the genus *Argiope*, but I have not been able to trace in its interior any of the vertical septa which, in this genus, support the loop. The muscular impressions are singularly large, and from the base of the hinge-plate may be seen the points from which some kind of loop or spiral appendages took rise. Along with the typical form (fig. 13) was found a more circular and globose variety (fig. 14).
Spiriferina ? oolitica was found by Mr. C. Moore in the Inferior Oolite of Dundry, and also at Seavington, near Ilminster. It is said to have been met with in the Great Oolite of Hampton Cliff, Bath.

"Shell microscopic, often one-sided or unsymmetrical, slightly rugose; valves moderately convex; deltium triangular; area broad and flattened; hinge-line broad; front of shell rounded. In some specimens the shell presents a uniformly flattened surface, whilst in the majority the outer surface of the smaller valve possesses mesial folds, and the larger valve a central sinus" (Moore).

Obs. I know so little of this minute fossil that I cannot venture to express any opinion with respect to the genus to which it belongs. I have, however, made a carefully enlarged drawing of one of the specimens, and which shows a kind of undefined elevation or fold near the front of the dorsal valve, and also a kind of biplication in the ventral one. Mr. Moore states that the shell is not uncommon in the Inferior Oolite of Dundry.

Spec. Char. Shell minute, about one line and a half in length and breadth. Valves very gently convex. In the dorsal there are seven rounded ribs, with wide concave interspaces, the central rib being the widest. In the ventral valve, which is the deepest, there are about six ribs, with a deeper interspace or sinus along the longitudinal middle of the valve. Beak pointed, not much incurved, with a longish triangular foramen margined by deltidial plates. In the interior of the dorsal valve can be seen a divided hinge-plate, to which was attached some kind of unknown support for the labial or brachial appendages.

Obs. Of this interesting minute fossil I have seen several examples, from which I have made the carefully enlarged figures given in our plate; but none showed the interior, so that it was not possible to ascertain the genus to which it belonged. I thought it, however, preferable to place the shell provisionally under Spiriferina, from which it can be removed as soon as the genus to which it really belongs shall have been ascertained. It bears much external resemblance to some Palaeozoic forms of Retzia ferita. It was found by Mr. C. Moore in the Upper Lias of Ilminster.
Genus Thecidium, Defrance.

47. *Thecidium ornatum, Moore.* Sup., Pl. XIII, figs. 5—9.

Shell small, rather longer than wide, pyriform ovate, rather broad, rounded, and slightly indented anteriorly; hinge-line straight, shorter than the width of shell. Dorsal valve semicircular, slightly convex, depressed towards the front, most convex at the umbo. Surface smooth, marked by concentric lines of growth. Hinge-line narrow. Ventral valve much thickened, and deeper than the opposite one; beak large, produced, and slightly incurved, callous, and attached by a considerable portion of its truncated posterior extremity. Area triangular, deltidium scarcely defined and much flattened. In the interior of the ventral valve there exists a longitudinal ridge, which divides the interior into two parts. To this median ridge two slender septa, originating under the dental processes converge to become united to the central septum at about half its length, and thus forming two oval depressions. A granulated ridge encircles the shell at a short distance from the margin. In the interior of the dorsal valve there exists between the sockets an oblong or squarish, concave, prominent cardinal process. A short granulated margin to a great extent encircles the valve and forms a bridge over the small, deep, visceral cavity. The granulated ridge, when it reaches the front, becomes inflected upwards in a \(\Delta \)-shaped form, and two branches terminate or unite posteriorly in a point at a short distance from the bridge. From the angular termination of the above-described ridge are thrown off two delicate, curved lamellae, and from which project on each side two spur-like processes.

Obs. Mr. Moore observed in his description of this species that "the preservation of the loops as shown in the enlarged figure is remarkable, since in the original specimens it is in substance scarcely thicker than the finest unspun silk, and extremely brittle. The interiors of the Brachiopoda are only to be developed by careful manipulation in dissecting or opening up the valves. Many of the interiors of the Thecididae are very beautiful; but I have never as yet seen any species equalling in delicacy of structure that under consideration."

I have seen some ten or eleven specimens of this species obtained by Mr. Moore from the Coral Rag of Lyneham, Wilts, where the shell is said to be not uncommon. It does not appear to have much exceeded one line in length and breadth, but varies a good deal in shape, some specimens being more transverse or elongated. There exists also a good deal of variation in the degree of deviation in the central granulated ridge in
the dorsal valve. In some specimens both branches appear to be united almost in their entire length, while they are more or less widely separated in others.

"Shell microscopic, longitudinally oval; both valves convex; attached to other bodies at the upper part of the ventral valve; beak slightly produced; area short; deltidium ill-defined. A thin raised ridge passes round the front and sides of the dorsal valve, until it reaches the dental sockets. It is without a central septum, nearly always present in other species, the only ornamentation within the ridge being numerous punctations."

"Obs.—This shell is very numerous in the Coral Rag of Lyneham, associated with _T. ornatum_ and _T. triangulare_. I have been unable to trace any passage into either of the above species, otherwise it might have been considered a young stage of one of them. As it is altogether different in character, and as the shell, though so minute, is very persistent in its forms, I have ventured to give it the above specific description." (Moore).

This shell is so extremely minute that its real characters can be scarcely defined, and I had great trouble in making the new drawings in the accompanying plate, those given in 'The Geologist' not being quite correct. I cannot feel certain that it belongs to the genus _Thecidium_. The largest specimen that has passed through my hands did not exceed the fifth of a line in length and something less in breadth.

This species, according to Mr. R. Tate, occurs in the zone of _Am. angulatus_ (Lower Lias), in the zones of _Am. margaritatus_, and _Am. spinatus_ (Middle Lias), and in the zone of _Am. bifrons_ (Upper Lias). The first specimens of the species were found by Mr. C. Moore in the Middle Lias near Ilminster, and subsequently by Mr. E. Deslongchamps in the Lias of May, near Caen, France.
When I described this shell in 1851, the interior had not been discovered, since then it has been well described and figured by Mr. C. Moore in the following words:—"The interior of the ventral valve shows a slight middle septum, on each side of which are two large scars, due to the attachment of the cardinal muscle, on the outer edge of which are two small depressions, which received the adductor muscles; interior rugosely striated; the cavity of the valve in adult shells surrounded by a broad margin, having a wavy appearance due to lines of growth. Interior of dorsal valve has a broad granulated margin, within which is a very high central septum, nearly reaching the surface of the opposite valve, from whence proceeds a granulated ridge, united by a bridge over the visceral cavity: within this ridge is a smooth slightly concave space, between which and the granulated interior is a small granulated ridge."

This species occurs in the Middle and Upper Lias, and passes into the Inferior Oolite. It was found by Mr. Moore in the last-named formation at Dundry. Mr. E. Deslongchamps obtained the shell in the Upper Lias of May and Fontaine-Etoupe-four, near Caen, in Normandy.

Nothing new. Inferior Oolite.

Thecidium triangulare, Moore. Proceedings of the Somersetshire Archæological and Natural History Society, vol. for 1854, p. 121, pl. iii, figs. 11, 12.

Mr. Moore observes that "this species has been figured by Mr. Davidson and Mr. E. Deslongchamps, the latter of whom mentions that the sub-circular ridges in the French specimens are sometimes formed of a double line of granulations. In examples that have come under my observation, the ridge is usually made up of single granulations, and those at times widely separated, but I have no hesitation in placing them under this species."

Th. triangulare is a common species in the Inferior Oolite of Dundry; the large valve is, according to Mr. Moore, attached in abundance to Oysters and other shells, in the fuller's earth near Combe Down, Bath. Has been found in the Great Oolite of Hampton Down, Bath. It has also been met with in the Coral Rag, but no specimens have been hitherto recorded from either the Kimmeridge or Portland rocks. According to Mr. Moore it would have made its first appearance in the Lower Lias at Brocastle, Keynsham, in the Middle Lias of Ilminster, and in the Upper Lias at Charter House Mine. Mr. Deslongchamps quotes the species from the Great Oolite of St. Aubin de Langrune, near Caen, in Normandy.

53. *Thecidium rusticum*, *Moore*. Dav., Ool. Mon., p. 15, Pl. I, fig. 14; and Sup., Pl. XIII, fig. 10?

Thecidium rusticum, *E. Deslong*. Mém. Soc. Linn. Normandie, vol. xiii, pl. xiii, figs. 12—18 and 20, 1853, and vol. x, pl. v, figs. 11, 12, 1855.

According to Mr. E. Deslongchamps, the interior of the dorsal valve varies very considerably in the shape of its raised septum or ridge, which becomes much more sinuated and dilated in some specimens than in others.

Th. rusticum has been found in the Lower, Middle, and Upper Lias. In France it was obtained by Mr. E. Deslongchamps from the Upper Lias of May, in Normandy.

54. *Thecidium subserratum*, *R. Tate*. Sup., Pl. XIII, figs. 11, 12, 13.

Thecidium subserratum, *Tate*. Geol. Mag., vol. vi, p. 551, 1869.

"Shell subquadrangular, attached by the whole of the lower surface of the ventral valve, the front of which is much elevated: area triangular, narrow, hinge-line long and
straight. Dorsal valve convex, smooth, inflated at the umbo, interior with a plain border, within which is a raised serrated margin, from which arises a longitudinal medial lanceolate septum occupying two-thirds the length of the shell, the muscular depression is smooth. This species is related to T. rusticum, T. granulosum, and T. triangulare, but presents a combination of characters which distinguishes it from them.

"Locality.—Brocastle. Zone of Am. angulatus" (Tate).

Not having had the advantage of being able to examine specimens of this shell, I have reproduced Mr. Tate's description. It is not recorded as having been found higher up than the Lower Lias.

55. Thecidium Deslongchampsii, Dav. Appendix to vol. i, p. 14, Pl. a, fig. 6, 6 a.

Nothing new. Middle Lias (zone of Am. margaritatus).

Mr. Moore observes, that the interior of the dorsal valve of this species is very variable, that in some instances the internal ridges are formed by widely-separated granulations, that in others they are continuous. The ridges are spinose.

I have seen all the original specimens from which Mr. Moore's figures have been taken, and can consequently answer for their accuracy. The shell slightly exceeds one line in length by something less than two in width. It occurs in the Inferior Oolite of Dundry.

57. Thecidium serratum, Moore. Dav., Supplementary Appendix to vol. i, p. 30, and Sup., Pl. XII, figs. 10 to 14.

As this species was very briefly described in the Supplementary Appendix to the first
Volume of this work, I will reproduce Mr. Moore's account of its interior:—"Interior of ventral valve shows two produced teeth, between which, under the deltidium, is a small central ridge, on either side of which are muscular depressions, beyond which are the impressions of the larger muscles. About the middle of the cavity of the valve commence striated ribs, which become more produced as they approach the inner front of the shell, terminating at the margin of the valve in small bosses or knobs. The interior of the dorsal valve has a deep frontal margin, comprising nearly half the area of the valve, chiefly occupied by a series of deep grooves, which received, when closed the bosses of the ventral valve; where the grooves cease, a flattened striated band occurs. Within the margin is an elevated ridge, with granulations, united at the top by a straight ridge, forming a bridge over an elongated visceral cavity, and at the bottom by a broad septum. The inner portion of the valve is occupied by a calcified supra-membraneal disk, divided into two lobes by the central septum. This beautiful species of Thecideum is the only one which presents so peculiar a frontal margin. It is very rarely found perfect, only two specimens showing the supra-membraneal disk having been obtained."

This shell occurs in the Inferior Oolite of Dundry. It is a minute species being less than a line in length and width.

58. Thecideum septatum, Moore. Dav., Supplementary Appendix to vol. i, p. 30, and Sup., Pl. XII, figs. 22 to 24.

Inferior Oolite, Dundry. It is scarcely half a line in length, but a little more in width.

59. Thecideum Forbesii, Moore. Sup., Pl. XII, figs. 6 to 9.

Thecideum Forbesii, Moore. Proc. of the Somersetshire Archeological and Nat. Hist. Soc., vol. for 1854, p. 120, pl. iii, figs. 8—10.

Shell minute, transversely oval, wider than long. Hinge-line straight, about half the width of the shell. Dorsal valve much depressed or of small convexity. Surface smooth. Ventral valve attached by the whole of its lower surface; beak straight, area triangular, flat; deltidium occupying about one third of the surface of the area. In the interior of the ventral valve, under the deltidium, are two converging ridges with a straight
central one, and towards the front are short rounded ribs with interspaces of about equal breadth. In the interior of the dorsal valve, at a short distance from the margin, a raised granular ridge surrounds the shell, and from which arises a lanceolate septum which extends to nearly two thirds of the length of the shell. A supra-membranaceous granular disk forms likewise two circular platforms on each side of the median septum. The raised margin of the shell is also granulated. This species was well described by Mr. Moore who states that the interior of the ventral valve is not unlike that of *Th. serratum*, but that it wants the elevated front of that species, and that it may also be distinguished by its more oval shape and less produced beak. He adds likewise that when the supra-membranaceous disk is wanting, the dorsal valve shows two small oblong elevations on each side of the septum. The shell is very small, not much more than half a line in length and width, and is said by Mr. C. Moore to occur in the Inferior Oolite of Dundry.

60. *Thecidi um granulosum*, *Moore*. Sup., Pl. XII, figs. 1—5.

"Shell thick, longitudinally oval, area triangular, concave; deltidium flattened; hinge-line straight, outer side of dorsal valve convex, having lines of growth and short striae towards the frontal margin, ventral valve having a sinus in the centre. Interior of ventral valve has a central ridge through its greater length, on each side of which are muscular impressions. The interior of the dorsal valve has a flattened thickly granulated margin, within which a raised ridge, formed of larger single granulations, united in the centre by a septum occupying about one half the length of the shell, sometimes smooth, at others covered with granulations, and joined over the visceral cavity by a bridge, the equivalent of the crural processes of *Terebratula*; within this ridge occurs a small raised ridge, answering to the loop in other Brachiopoda to which were attached the brachial membrane and oral arms, within which, and occupying the larger portion of the cavity of the shell, occurs a calcified supra-membranaceous disk, divided by the septum into two lobes of brain-shaped convolutions, the free portion of which extends over the visceral cavity. This species presents considerable variety in most cases depending upon the completeness of the supra-membranaceous disk."

I have reproduced Mr. Moore's description as it conveys all we know upon the subject. The shell attains to nearly two lines in length and quite that in breadth. It was found by Mr. Moore in the Inferior Oolite at Dundry.
In addition to the species described several undetermined valves of perhaps other species of *Thecidium* have been found by Mr. C. Moore in the Inferior Oolite of Dundry, Sup., Pl. XIII, figs. 14, 15, of which we have given drawings in the hope that they may, in time, be correctly identified.

Examples of a *Thecidium* much resembling *Th. triangular* have also been found attached to the specimens of *Wald. curvifrons* from the Oolite Marl of Leckhampton and Washbrook, near Cheltenham. Another undetermined form was also collected by Mr. Walker in the Coralline Oolite series at Ayton Quarry, near Scarborough.

Genus Argiope, Deslongchamps.

Spec. char.—Shell minute, wider than long; dorsal valve semicircular, of moderate convexity. Surface ornamented with thirteen rounded ribs of which the central one is somewhat the largest. Ribs divided by interspaces of almost equal width; hinge-line as wide as the greatest breadth of shell. Ventral valve slightly deeper than the opposite one, beak nearly straight, area triangular, flat, moderately broad, with a largish foramen in the middle. External surface ornamented, as in the opposite one, both valves being crossed by equidistant concentric lines of growth. Length 1 line, breadth 1 1/4.

Obs.—Of this small shell Mr. Moore has found but a single example, and as nothing is known respecting its interior, it is provisionally referred to *Argiope*, to some forms of which it bears resemblance.

Genus Zellania, Moore.

At p. 145 of the 'American Journal of Conchology,' vol. vi, part 2, 1870, Mr. Dall considers *Zellania* to be a synonym of the sub-genus *Cistella* of Gray. I have not, however, seen the loop in any of the many specimens of *Zellania* collected by Mr. Moore, and consequently cannot say whether it agrees with that of *Cistella*. Mr. Moore observes that *Zellania* has a large and rounded foramen, which, like that possessed by *Platidia*, encroaches on both valves.
62. **Zellania Davidsoni, Moore.** Sup., Pl. XI, fig. 18, 19.

Nothing new, except that some fine comparatively large examples were found by Mr. C. Moore in the Lower Lias at Brocastle; and others in the Inferior Oolite of Dundry.

63. **Zellania Laboucherei, Moore.** Sup., Pl. XI, figs. 20, 21.

This minute fossil has been found by Mr. C. Moore in the Inferior Oolite of Dundry, and in the Lower Lias of Brocastle.

64. **Zellania liasiana, Moore.** Sup., Pl. XI, figs. 23, 24.

This minute shell is so exceedingly thin, that the interior may sometimes be seen through the transparency of its valves. It occurs, as already stated, in the Upper Lias or Zone of *Am. bifrons* in the neighbourhood of Ilminster.
65. **Zellania globata, Moore.** Sup., Pl. XI, figs. 25 to 27.

Zellania globata, Moore. The Geologist, vol. iii, p. 444, pl. xiii, figs. 15—17, 1860.

Shell minute, generally slightly wider than long (sometimes the reverse) globose; valves moderately convex, with a small depression near the front in the dorsal valve; beak small, area narrow, flat, with a somewhat triangular foramen; surface smooth. About half a line or less in length and breadth.

*Obs.—*I have seen ten specimens of this very minute shell. It was not very correctly drawn in 'The Geologist,' being much less circular than there represented, and the depression in the dorsal valve not so great. No specimens showing the interior of the dorsal valve seem to have been hitherto discovered; but in the interior of the ventral valve there exists a very peculiar and well-defined ridge, which encircles the inner portion of the shell at a short distance from the margin. No trace of septa are visible in the ventral valve. *Z. globata* was found by Mr. Moore in the Great Oolite of Hampton Cliff, Bath; in the Fuller's Earth, Bath, and in the Coral Rag of Lyneham (Wilts).

66. **Zellania oolitica, Moore.** Sup., Pl. XI, figs. 28.

Zellania oolitica, Moore. The Geologist, vol. iii, p. 444, pl. xiii, figs. 18—20, 1860.

Shell very minute, triangular, longer than wide, broadest and rounded anteriorly, tapering posteriorly; valves moderately convex, most so near the beak and umbo; surface smooth. Length about the third of a line.

*Obs.—*Mr. Moore informs me that the punctations under the microscope are widely separate. The incurvation of the umbo in the dorsal valve seems to be much greater in some examples than in others. I have not seen any good interior, or indication of the presence of a septum in either valve. Mr. Moore states, in his description of this shell, that it is found with the *Z. Davidsoni* and *Z. Laboucherei* in the Inferior Oolite of Dundry. That it is a thicker and more triangular shell than the former, and devoid of the striae noticed in that shell. He adds that it is to be distinguished from *Z. Laboucherei* by its triangular and less symmetrical form, and wants the concentric lines on the valves, characteristic of that species. The shell-structure is distinctly puncate, as it is in all the species of the genus. I have seen eight examples from Dundry.
67. Zellania obesa, Moore. Sup., Pl. XI, fig. 22.

"Shell minute, transversely ovate, much inflated: margin rounded; deltidium triangular, widely gaping, and encroaching, as is usual with this genus, on both valves; surface smooth. Only one example of this shell has been found; its very oval and inflated character distinguishes it from the other three Liassic species I have described. But for its very wide deltidium it might have been mistaken for a species of Entomostraca.

Locality.—The Lower Lias of Stout's Hill." (Moore.)

Genus Terebratella, D'Orbigny.

68. Terebratella Buckmani, Moore. Sup., Pl. XIV, figs. 13, 14.

Terebratella Buckmani, C. Moore. The Geologist, vol. iii, p. 441, pl. xiii, figs. 1—5, 1860.

Spec. Char.—Shell small, smooth, usually rather longer than wide, broadest about the middle, rounded in front. Valves moderately convex, without fold or sinus; beak of ventral valve slightly incurved, and truncated by a rather large foramen, laterally partly margined by small deltidial plates. In the interior of dorsal valve the hinge-plate is large and well defined; the loop doubly attached, first to the hinge-plate and again to a longitudinal septum, the principal pair of lamellae extending to some distance into the interior of the shell before becoming deflected so as form the loop; spinose projections are also seen rising from the anterior portions of the deflected portion of the loop. Shell-structure punctated. Dimensions variable; length 8; width $2\frac{3}{4}$ lines.

Obs.—Externally this small species is not easily distinguishable from similar sized examples of Terebratula maxillata, with which it had been confounded until Mr. C. Moore was able to show that its loop was doubly attached, and possessed all the internal characters of true Terebratellae. The loop seems also to have been subject to various changes in its process of development. Terebratella Buckmani may, however, be often distinguished from young T. maxillata by a dark longitudinal line extending from the
extremity of the umbo of the dorsal valve to nearly the centre of the valve, which denotes
the presence of an internal median septum.

Position and Locality.—Terebratella Buckmani occurs in the Great Oolite of Hampton
Cliff, near Bath, where it is rather abundant.

69. Terebratella furcata, Sow., sp. Sup., Pl. XIV, figs. 15, 16.

Terebratella — C. Moore. Geol. Mag., vol. iii, p. 442, pl. xiii, figs. 8—10, 1860.

Spec. Char.—Shell very small, slightly longer than wide, sides and front rounded,
tapering at the beak, which is truncated by a circular foramen, partly margined by small
deltidial plates; valves regularly and moderately convex, without fold or sinus, and
ornamented with from ten to seventeen small, angular ribs, of which a few are due
to bifurcations and intercalations at various distances from the beaks. Shell-structure
punctated. In the interior of dorsal valve the hinge-plate is large, while the loop is
doubly attached to the hinge-plate and mesial septum. Dimensions variable; length 2$rac{1}{2}$;
breadth 2 lines.

Obs.—This shell has generally been confounded with the young of Waldheimia
cardium, to which it externally bears much resemblance; it was only after Mr. C. Moore had
discovered its loop to be that of a Terebratella that the distinction could be established.
Indeed, in shape and character its loop entirely agrees with that of Terebratella Buckmani,
as may be seen by a glance at the figures of the interior of both species. Sowerby in
1826, without having seen its interior, described it as distinct from Wald. cardium (his
Terebratula orbicularis). He mentions that, when old, the plaits are forked and the sides
rounded.

Position and Locality.—T. furcata occurs in the Great Oolite of Hampton Down,
near Bath. Perhaps Pl. XII, fig. 17, of my Monograph may belong to the species under
description.

70. Terebratella Moorei, Dav. Sup., Pl. XIV, fig. 17.

A single broken dorsal valve, of a very small finely striated Terebratella, differing
in several respects from T. furcata, was found in the Great Oolite of Hampton Cliff,
Bath, by Mr. C. Moore, in whose collection the specimen is preserved. I have
considered it desirable to give the shell a distinctive name, although I am not able to give
a complete description of it, in order that further search for more complete examples may be made in the locality.

71. Terebratella ? liasiana, Desl.

Argiope liasiana, E. Desl. Annuaire de l’Institut des Provinces pour 1853 et 1854, p. 16, pl. i, figs. 3 and 4, 1855.

Terebratula (terebratella) liasiana, E. Desl. Pal. Franç., Brachiopodes Jurassi-
ques, p. 142, pl. xxxiii, figs. 13 and 14, and pl. xxxiv, figs. 1—11, 1863.

Mr. R. Tate states that this minute and rare species has been found in the Middle Lias, Zone of Am. margaritatus of England, but he does not give the locality. I have never seen any British example, so I cannot describe or figure it. It has been well described and beautifully illustrated by Mr. E. Deslongchamps in his ‘Brachiopodes Jurassiques,’ who informs us that it occurs in the Middle Lias of Fontaine-Etoupe-four, May, and Bretteville-sur-Laise in the Department of Calvados.

Subgenus Terebratulina, D’Orbigny.

Terebratulina radiata, Moore. The Geologist, vol. iii, p. 444, pl. xiii, figs. 11—14, 1850.

Spec. Char.—Shell very small, almost circular, and nearly as broad as long, widest towards the middle, sides rounded, front straight or slightly indented. Valves moderately convex, ventral valve with a shallow sinus, extending from the back to the front, beak moderately incurved and truncated by a rather large foramen. Walls laterally margined by small deltidian plates, which do not unite in front. Dorsal valve rather less convex than the opposite one, with a median depression commencing at about half the length of the valve and extending to the front. Surface of both valves covered with numerous fine radiating ribs, of which a large number are due to intercalation and
bifurcation at various distances from the beaks. In the interior of the smaller valve the loop is simple and short, and attached by its crura to the hinge-plate. Shell-substance perforated by small canals. Dimensions variable; not much exceeding one line and a half either in length or breadth.

Obs.—Mr. C. Moore placed fourteen examples of this small species at my disposal for examination; they all partook of the same character and most of them were about as broad as long. Its loop was not, however, annular, as is generally the case in Terebratulina. As the oral processes are disunited at times in many undoubted specimens of well-known species of the genus, it is possible that other examples of the species under description may have had their oral processes united. Species of Terebratulina are rare in the Jurassic period, and consequently Mr. Moore’s discovery is an interesting one.

Position and Locality.—T. radiata occurs in the Great Oolite of Hampton Cliff.

73. Terebratulina radiata, var. Dundriensis, Dav. Sup., Pl. XIV, fig. 10.

This variety (or species) seems to be always, as far as the limited material I have been able to examine would warrant, longer than wide and without a mesial depression in either valve. Its striation is similar in character to that of T. radiata, and its dimensions are also about the same. It was found by Mr. C. Moore in the Inferior Oolite at Dundry.

74. Terebratulina ? Deslongchampsii, Dav.

Terebratula Deslongchampsii, Dav. Annals and Mag. of Nat. Hist., 2nd ser., vol. v, p. 450, pl. xv, figs. 6, 6 a, 1850.
Terebratulina — Oppel. Die Jura-Formation, p. 263, No. 81, 1856.

Mr. C. Moore mentions having found this very interesting species in the Middle Lias of Whatley, but, as his specimens have been mislaid, I have not been able to ascertain the correctness of his identification or give a figure of the species. It is, however, very possible
that the shell does occur in our Middle Lias. It has been well described and illustrated by Mr. E. Deslongchamps in his admirable work on 'French Jurassic Brachiopoda.' The genus to which it should be referred must, however, still be considered as undetermined, although, as seen by Mr. Deslongchamps' figures, the loop would bear more resemblance to that of Terebratula, Terebratulina, and Platidia than to that of Kingena, to which genus the shell is referred with some uncertainty by my distinguished friend. He, however, justly observes that externally the shell bears a great resemblance to Kingena lima.

In France T. Deslongchampsii occurs in the uppermost portion of the Middle Lias (la Couche à Leptæna), of which it is a very characteristic species. It is very desirable that a further search for British examples should be made.

75. Terebratulina? granulosa, Dav. Dav., Ool. Mon., p. 18, Pl. I, fig. 20; Sup., Pl. XIV, figs. 11, 12.

I was mistaken when I described in 1850 an incomplete valve of this species as a Leptæna, and Mr. R. Tate was equally in error when he referred it to Placunopsis (‘Geol. Mag.,’ vol. vi, p. 550, 1854). Since 1850 Mr. C. Moore has found seven examples with the interior of the dorsal valve partly preserved and showing that the shell is indubitably a Brachiopod and perhaps closely allied to T. Deslongchampsii. The first attachment of the loop to the hinge-plate was clearly visible in two specimens.

These shells do not seem to have exceeded two lines in length, with a slightly greater breadth; the ventral valve is convex and somewhat flattened along the middle, the beak slightly incurved, moderately produced and apparently truncated by a small foramen separated from the hinge-line by two deltidial plates; the dorsal valve is very slightly convex, no fold or sinus being observable in either valve. The whole surface of the shell is covered with minute, but visible granulations, arranged in radiating lines, and especially so to some distance from the beaks.

The shell is left provisionally in the genus Terebratulina, from which it will, in all probability, have to be removed as soon as the internal characters have been better ascertained.

T. granulosa occurs in the Upper Lias of Ilminster.
JURASSIC AND TRIASSIC BRACHIOPODA.

Subgenus Suessia, E. Desl.

76. Suessia imbricata, E. Desl.

This species is stated by Mr. C. Moore to occur in the Middle Lias of Whatley; but as he did not describe the species, and has mislaid the specimens, I can only repeat his statement.

Genus Terebratula, Llwyd.

77. Terebratula (?) Suessi, E. Desl. Sup., Pl. XIV, figs. 4, 5, 6.

— (?) — — Id., for 1854, p. 15, pl. i, figs. 1 and 2.
— — Oppel. Die Jura-Formation, p. 263, pl. lxxxii, 1856.
— — Suess. Classif. der Brach. von Th. Davidson, p. 58, pl. ii, figs. 4 a, b, c, 1856.

Spec. Char.—Shell small, transverse, spindle-shaped, or transversely and obscurely pentagonal; hinge-line straight; lateral extremities elongated and acutely acuminated. Both valves moderately and evenly convex, without fold or sinus; ventral valve rather the deepest. Beak of ventral valve, slightly incurved, area triangular, large and wide, foramen large, commencing under the extremity of the angular beak and laterally margined by a narrow plate. Hinge-area in dorsal valve narrow and divided in the middle by an obtuse v-shaped notch, which corresponds with the foraminal aperture in the area of the opposite valve. Surface of valves ornamented with from ten to thirteen rounded imbricated ribs, with interspaces between them of about equal breadth. In the
interior of the dorsal valve there is a narrow hinge-plate with a cardinal process in its centre. Loop very imperfectly known. Shell-structure punctated. Dimensions variable; a large example measured, length 2, breadth 4 lines.

Obs.—The genus to which this and the following species should be referred is still a matter of conjecture. It was at first supposed to be referable to Argiope, but, as there exists no submarginal septa for the attachment of a two- or four-lobed loop, it was subsequently removed from that genus by Mr. Deslongchamps, and placed provisionally into Megerlia; but this is also merely a guess, for no sufficiently developed mesial septum for the attachment of any portion of the loop is observable. After breaking a number of specimens, all I could find of the loop was a small portion of the riband-shaped lamella and crural process which I have drawn in fig. 3, and which is not sufficient to allow us to conjecture what may have been its complete condition, and consequently the genus or subgenus to which it should be referred. Externally M. (?) Suessi bears some resemblance to Argiope, but its interior is very distinct. I also observed in the interior of some dorsal valves two largely developed muscular impressions (fig. 6), surrounded by a well-marked ridge, and divided along the middle by a narrow longitudinal elevation. The species is provisionally placed in the genus Terebratula.

Position and Locality.—This very small and elegant shell was found for the first time by Mr. E. Deslongchamps in the Liassic of May and Bretteville-sur-Laïse (Calvados), France, where it is abundant, although difficult to collect on account of its very small dimensions. In England it was found by Mr. C. Moore in the Middle Liassic or Zone of Ammonites margaritatus, at Whatley, near Frome, in Somersetshire.

78. Terebratula (?) Perrieri, E. Desl. Sup., Pl. XIV, figs. 1, 2, 3.

Argiope Perrieri, E. Desl., Annuaire de l’Institut des Provinces pour 1853, et Annuaire id. pour 1854, p. 18, pl. i, figs. 5 and 7, 1855.

— — Oppel. Die Jura-Formation, p. 263, No. 82, 1856.

— — Suess. Classif. der Brach. von Th. Davidson, p. 58, pl. ii, fig. 4 a, b, c, 1856.

Spec. Char.—Shell small, transverse, obscurely pentagonal, hinge-line straight; lateral expansions elongated and acutely acuminated. Ventral valve convex, with a large wide central rib or fold, and five or six rounded or slightly angular ribs on each of the lateral portions of the valve, beak almost straight; area triangular and wide, foramen
commencing under the extremity of the beak, and margined on either side by narrow deltidial plates. Dorsal valve much less convex than the opposite one, and divided in the middle by a rather deep sinus, five or six ribs occupying each side of the lateral portions of the valve, while the whole surface of the shell or ribs are concentrically crossed by numerous equidistant projecting lines of growth. Shell perforated by numerous canals. In the interior of the smaller valve the hinge-plate is well-defined, as well as the attachment to it of the riband-shaped lamellae forming the loop. A small short septum extends also for a short distance along the bottom of the valve. Dimensions variable; a large example measured, length 3, width 6 lines.

Obs.—Whatever may be the genus to which this species should belong, it will not, I think, when better known, be retained either in *Argiope, Megerlia*, or *Terebratula*, although it will no doubt find its place among the *Terebratulidae*. Its loop is not yet known, and all my attempts, as well as those of Mr. E. Deslongchamps, to discover it have hitherto failed. It will, however, there is little doubt, bear the same shape and character as that of *Terebratula (♂) Suessi*. In the fissure of the larger valve I perceived in a specimen from Normandy, a large sunk flattened plate or pseudo-deltidium (fig. 2 a). It differs at once from *Tereb. (♂) Suessi* in having a fold and sinus; it is also a much larger and less spindle-shaped shell. Of this and the preceding species some beautiful figures will be found in Deslongchamps' 'Jurassic Brachiopoda' above referred to.

Position and Locality.—This species was discovered for the first time by Dr. Perrier in the Middle Lias of Fontaine-Etoupe-four, and May, near Caen, in Normandy. It is not so abundant as *T. Suessi*.

In England it was found by Mr. C. Moore in the Middle Lias of Whatley, near Frome, in Somersetshire.

This species occurs plentifully in the Forest Marble, Bradford Clay, Great Oolite, and Cornbrash. There are, however, specimens in the Museum of the School of Mines in London, stated to have been obtained from the Inferior Oolite, which cannot be distinguished from the large examples from the Bradford Clay and Cornbrash. These were found in a sandy limestone, about half a mile south of Great Ponton, near Grantham, Lincolnshire.
80. **Var. submaxillata, Morris.** Dav., Ool. Mon., p. 51, Pl. IX, figs. 10—12.

In his paper on the Cotteswold Hills, Mr. Lycett states that *T. submaxillata* is a shell whose numerous phases of form exemplify the difficulty of separating it, even as a variety, from the Cornbrash *T. maxillata*. In the Cotteswold Hills *T. submaxillata* is found in the Oolitic Marl series (which is the third or highest division of the Fimbria-stage of the Inferior Oolite), associated with the following Brachiopoda:—*T. fimбриa, Wald. curvifrons, T. galeiformis, T. plicata, T. simplex, Rh. subobsoleta, Rh. concinna, and Rh. subtetrahedra*.

Mr. Jones, of Gloucester, is also of opinion that a merely cursory examination of a series of so-called *T. submaxillata* from the Pisolite and Marl of the Inferior Oolite, as compared with each other and the type from the Great Oolite, as illustrated in his collection, will lead to the conclusion that they must certainly be regarded as one species.

I distinctly stated at p. 51 of my Monograph that the shell under description cannot be separated specifically from *T. maxillata*, but that I have observed certain small differences in the form found in the light yellow clay bed of the middle division of the Inferior Oolite, to which it might be desirable to give a varietal designation. Mr. E. Deslongchamps, in his *Paléontologie française Brachiopodes jurassiques*, would go much further and make of it a distinct species. Mr. Walker justly remarks that it is easy with selected specimens to prove anything; for out of several thousand one can find abnormal examples in any genus, and by placing these between a series arranged of different species one can appear to have connected them together. He adds that he regards a species as a centre round which individuals are thickly clustered, and that the spaces between these centres may be either devoid of individuals, or may contain here and there an abnormal form.

81. **Terebratula perovalis, Sow.** Dav., Ool. Mon., p. 51, Pl. X, figs. 1—6; Sup., Pl. XVII, fig. 9.

I have not much to add or alter with respect to this well-known species. Mr. E. Deslongchamps in his *Brachiopodes jurassiques, Paléontologie française* (p. 107) gives a long list of synonyms and references to which the student is referred. Among other things he states that it is difficult to know what is the first name that was given to the species,—that in the *Atlas of the Encyclopédie Méthodique*, Bruguière gives a good figure of the species, vol. iii, pl. ccxxxix, fig. 5, but without a name,—and that in
1819 Lamarck describes two distinct species under the name of *Kleinii*, one of which is evidently a much biplicated variety of the shell under description.

T. perovalis is very variable in shape, and especially in the degree of biplication of its valves. Specimens, however, from the Inferior Oolite of Dundry, Yeovil, and some other places are perfectly identical in shape with others that occur in the same formation at Les Moutiers, in Normandy, where the shell acquires very large proportions.

In full-grown individuals the biplication, so often observable in smaller examples, is quite obliterated, the valves being almost uniformly convex.

In specimens from other localities the biplication of the valves is so strongly defined, as in the variety *Kleinii*, that palaeontologists have often applied to them the unfortunate name of *biplicata*, which belongs exclusively to a species from the Gault and Upper Greensand.

The name *perovalis* has also been given by different authors to shells to which it really does not belong.

The variety *T. Kleinii*, of Lamarck, has also been found by Mr. Walker in a sandy bed under the Trigonia-grit, at Leckhampton Hill, Cheltenham (Sup., Pl. XVII, fig. 9).

82. *Terebratula Philippsii*, *Morris*. Dav., Ool. Mon., p. 53, Pl. XI, figs. 6—8, and Appendix A, fig. 14; Sup., Pl. XVII, fig. 10.

Almost every variation of this species has been admirably illustrated by Mr. Deslongchamps in the work above alluded to. He states that it is very abundant in the Inferior Oolite in the horizon of *Am. Humphriesianus*, and in the beds characterised by *Am. Parkinsoni*, and that it occurs, though much less numerously, in the Fuller's Earth and Great Oolite of France.

83. *Terebratula intermedia*, *Sow.* Dav., Ool. Mon., p. 52, Pl. XI, figs. 1—5; Sup., Pl. XVII, fig. 12.

T. intermedia is usually found in the Cornbrash; but, according to the Rev. A. W. Griesbach, it occurs also in the Great Oolite of Wollaston. In one specimen traces of the original colour are preserved in the shape of radiating stripes.
84.

Terebratula Joassi, Dav. Sup., Pl. XV, fig. 4.

Terebratula Joassi, Dav. Quarterly Journal Geol. Soc., vol. xxix, p. 196, pl. viii, figs. 3 and 3a, 1873.

Spec. Char.—Shell longitudinally oval, broadest anteriorly, slightly tapering at the beak. Valves very moderately convex, without fold or sinus. Beak small, incurved, and truncated by a small circular foramen, slightly separated from the hinge-line by a deltidium in one piece. Dorsal valve sometimes very much flattened. Surface smooth, marked with concentric lines of growth. Loop not known.

Length 1 inch 9 lines; width 1 inch 7 lines; depth 7 lines.

Obs.—The species which this shell most nearly approaches is the _T. ovoides_, Sow., _T. rex_, Lankester, but it differs from it in the absence of any mesial depression in the dorsal valve, and carination of the ventral one.

Position and Locality.—_T. Joassi_ was discovered by Mr. Judd, in the Upper Oolite, of Garty, Sutherland.

85.

Terebratula bisuffarcinata, Zieten, non Schloth. (?). Sup., Pl. XV, figs. 1, 2, 3.

Terebratula bisuffarcinata, Zieten. Verst. Würt., p. 53, pl. xi, fig. 3, 1834.

—_perovalis, Dav._ The Geologist, Dec., 1862, p. 445, pl. xxiv, fig. 8.

—_bisuffarcinata, Quenstedt._ Die Brachiopoden, p. 394, tab. xlix, figs. 22—40, 1871.

——_Dav._ Quarterly Journal Geol. Soc., vol. xxix, p. 197, pl. viii, fig. 5, 1873.

Spec. Char.—Shell generally longer than wide, valves moderately convex, and almost equally deep. Dorsal valve uniformly convex to about two thirds of its length, from the umbone; front gently raised either in a simple flattened fold, or moderately biplicated, a wide shallow longitudinal depression existing between them. Beak of ventral valve moderately incurved, and truncated by a circular foramen, margined laterally by a short deltidium. Surface smooth, marked only by concentric lines of growth. Loop simple and short (as in _T. perovalis_). Proportions variable; a large specimen measured 2 inches 2 lines in length, 1 1/2 inch in breadth, and 1 inch in depth.

Obs.—In 1820, at page 279 of his ‘Die Petrefactenkunde,’ Schlotheim describes a _Terebratula_ under the designation of _Terebratulites bisuffarcinata_, with the following references to figures:—Knorr, T. 11, T. B. IV, fig. 2, and Ency., t. 239, fig. 3 a, b;
but, as any one will at a glance perceive, the shells referred to belong to two distinct species. It is difficult, therefore, to know what shell Schlotheim had in view, and as a well-known species, occurring in the White Jura of Germany, was subsequently described by Zieten under the same name, I think it will be preferable to adopt Zieten's species and figures for the shell under description. It must, however, be noted that many specimens of this species bear so great a general resemblance to *Ter. perovalis* (Sow.) from the Inferior Oolite of England and France, that it is very difficult, if even possible, to distinguish them. In 1862, I figured and referred a specimen from Braambury Hill to Sowerby's species, and am not yet satisfied, notwithstanding the difference in geological horizon, that the view I then took was not the correct one. Some time after, I received from Dr. Sandberger some German specimens and internal casts labelled *T. bisuflarcinata*, Zieten, from the Korallen-Kalk of Muggendorf. These I compared with a large number of specimens from Braambury Hill, Sutherlandshire, procured by Mr. Judd from the Coralline Oolite (or Zone of *Anm. perarmatus*, Lower Calcareous Grit): I found them exactly similar, and think, therefore, it will be best to retain Zieten's name, although it is very evident that more than one form has been referred to this species by other Paleontologists. *T. bisuflarcinata* is very variable in shape, and (like *T. perovalis*) more or less elongated and deeply biplicated. These characteristics are often absent in adult specimens of Sowerby's species. It does not appear to have attained the dimensions of *T. perovalis*. I do not give references to doubtful figures.

86. **Terebratula insignis**, Schübler. Sup., Pl. XV, fig. 7.

Terebratula insignis is a large shell occurring abundantly in the Coralline Oolite of Germany, France, and England. It varies considerably in shape and dimensions. At Nattheim it sometimes exceeds three inches in length, while in other places it is much dwarfed.

At p. 608 of his 'Die Jura-Formation' (1857) Dr. Oppel proposes to distinguish the shell I figured and described at p. 47 of my Monograph by the varietal designation of *Maltonensis*. This view has been likewise taken by Mr. Walker and some other palaeontologists. Mr. de Loriol, on the contrary, observes at p. 233 of his great work on the 'Paléontologie des Étages superieurs du Boulonnais,' that he has seen and found every passage of form connecting the Malton variety with the large oval specimens figured by Zieten. He has also seen specimens from Nattheim showing so clearly every variation in form that he could not distinguish where the typical shape terminated or where the
varietal one began. He adds that the same fact is observable in specimens from Boulogne, Chatel Censoir, and many other places, and consequently he sees no necessity for Oppel’s varietal designation.

Mr. Walker informs me that Mr. Seeley and himself have found in the Oxford Clay at Elsworth (in a bed higher in position than the Kelloway rock), specimens which agree with Schübler’s or Zieten’s type. He thinks that as these last and Oppel’s variety occur with us in rocks of a different age there would be no harm in retaining Oppel’s named variety. We would therefore have—Terebratula insignis, Schübler. Dav. Sup., Pl. XV, fig. 7; from Oxford Clay, at Elsworth and Nattheim.

87. Var. Maltonensis, Oppel. Dav., Ool. Mon., p. 47, Pl. XIII, fig. 1; and Sup. Pl. XV, figs. 5, 6; and Oppel ‘Die Jura-Formation,’ p. 608. From the Coral Rag, or Cidaris-florigemma-Zone at Appleton and Whitewall near Malton. It occurs occasionally in one or two other Yorkshire localities. It is very rare in the Coralline Oolite of North Grinston, near Malton, in the bed which contains the fine Pseudodiadema hemisphaerica, where it was discovered for the first time by Mr. J. F. Walker. It is also met with in beds of a similar age at the Mont-des-Bucardes, near Boulogne. Terebratula insignis is well described by D. Brauns at p. 370 of his ‘Der Obere Jura,’ 1874.

88. Terebratula Oxoniensis, Walker, MS. Sup., Pl. XV, figs. 8, 9.

Spec. Char.—Shell broadly oval, longer than wide. Sides slightly convex, sometimes nearly straight, front moderately raised in a biciplicated rounded wave. Dorsal valve convex, and biciplicated from about the middle to the front. Ventral valve rather deeper than the dorsal one, beak incurved, moderately produced, and truncated by a circular foramen, slightly separated from the hinge-line by a deltidium in one piece. Surface smooth, marked by concentric lines of growth. The loop in the interior of the dorsal valve is short and simple. Proportions variable.

Length 1 inch 4 lines; breadth 1 inch 1 line; depth 10 lines.

Obs.—This species is easily distinguished from T. insignis by its biciplicated valves. It is generally black and glossy, and occurs in the Oxford Clay at St. Ives in Huntingdonshire, and some other places.

1 ‘Annals and Nat. Hist.,’ 1862.

Terebratula ventricosa (Hartmann). *Zeiten, die Versteinerungen Württembergs*, p. 52, pl. xi, figs. 2 a, b, c, 1830.

Spec. Char.—Longitudinally oval or ovate, longer than wide, deepest posteriorly, valves almost equally convex. Dorsal valve uniformly convex to about the middle of its length, when a more or less biplicated fold rises gradually and produces a flattened or more or less deeply biplicated wave in front. Ventral valve almost uniformly convex, or with a slight mesial elevation towards the front, margined on either side by a rounded groove which corresponds to the biplication in the opposite valve; beak incurved and truncated by a circular foramen. Surface smooth, marked only with concentric lines of growth. Proportions variable; an English example measured—

Length 1 inch 10 lines; width 1 inch 3 lines; depth 1 inch 1 line.

Obs.—I do not know very much about this species, which seems to vary to a very considerable extent. Some examples present a uniformly convex fold in the dorsal valve, which in many others is more or less deeply biplicated. In this last-named condition the shell might be almost confounded with some specimens of several biplicated species, such as *T. perovalis*, *T. intermedia*, *T. Phillipsii*, and others, for which distinctive characters are so difficult to find or express.

Mr. Deslongchamps adds to his description of this species a long synonomy, among which he places the shell to which I gave the name of *T. Buckmanii*, but I cannot admit this identification when I compare it with German and French examples, and figures of Hartmann's, or Zieten's shell. He adds that *T. ventricosa* can be at once distinguished from its congeners by its shell-structure, and by the fine longitudinal radiating lines of which traces can be observed on well-preserved German and French specimens,—a character, however, which he does not fail to admit, may be equally noticed in many other species of *Terebratula*, *Waldheimia*, &c.

The presence of Zieten’s species in British strata was noted, I believe, for the first time, by Mr. Walker, in the ‘York Herald’ for the 9th of October, 1875, as well as in the ‘Geol. Mag.,’ vol. ii, 2nd ser., p. 572, 1875. None of the British examples that have come under my observation, if they really belong to the German type, have attained the dimensions of those found upon the Continent.

Position and Locality.—Mr. Deslongchamps informs us that the shell is abundant in many French localities, and occurs in the zones of *Ann. Humphresianus* and *Parkinsoni*
at Bayeux, Les Moutiers, and other places in Normandy. It apparently occupies the same stratigraphical position at Balingen in Württemberg. In England, according to Mr. Walker, it would be found in the Inferior Oolite at Cleeve and Crichley Hills, Gloucestershire.

Nothing new.

91. **Terebratula trilineata**, Young and Bird. Dav., Ool. Mon., p. 48, Pl. VIII, figs. 6, 7; and Sup., Pl. XVI, figs. 1, 2 (not *T. ovoides*, Sow.).

Terebratula trilineata, Young and Bird. Geol. of Yorkshire, pl. viii, fig. 17, 1828.

Spec. Char.—Shell longitudinally and broadly oval, sides rounded, nearly straight in front, broadest about the middle. Dorsal valve either uniformly convex with a straight front line, or the front line raised into a gentle wave, but without biplication. Ventral valve slightly deeper than the opposite one, uniformly convex; beak moderately produced, and truncated by a rather large circular foramen, slightly separated from the hinge-line by a small deltidium. Surface smooth, marked by concentric lines of growth. Proportions variable.

Length 2 inches; breadth 1 inch 8 lines; depth 1 inch 6 lines.

Obs.—At page 48 of my Oolite Monograph I confounded this species with *T. ovoides*, Sow. At that period very little was known precisely with respect to the last-named shell; since then, at page 9 of the Supplement to the Species from the Drift, I explained this mistake, and, as far as I could, set matters right.

Position and Locality.—*T. trilineata* is very abundant in the Inferior Oolite at the Peak on the Yorkshire coast, also at Blue Wyke, Glazedale, at eight miles inland from Whitby, at Rosedale, Glosmont, &c. It occurs very often in the condition of internal casts, on which the muscular scars are sharply defined, as may be seen in some of our figures. Mr. Hudleston mentions having found the fossil in the shelly bed of the Dogger at Craig Hall (p. 3, fig. 4 of Phillips' Yorkshire Oolite, Part 1). *T. trilineata* is exceedingly variable in shape; some examples are broadly oval, others elongated and bearing resemblance to *T. punctata*, or its var. sub-punctata; still, taking the general character of the species, it is materially different or distinct from those last named.
Terebratula punctata, T. sub-punctata, T. Edwardsii, and T. sub-ovoides.

Mr. E. Deslongchamps justly remarks at p. 162 of his "Brachiopodes jurassiques" that *T. punctata*, Sow., is very variable in shape, and that its characters are but slightly marked. He adds that these are subject to considerable modification, for it merges gradually into those so-called species to which the names of *T. sub-punctata*, Dav.; *T. Edwardsii*, Dav.; *T. Davidsoni*, J. Haime; *T. Buchii*, Römer; *T. Sinemuriensis*, Oppel, have been applied. In the following observations we will restrict ourselves to those forms which occur in Great Britain.

This general view is, I believe, more or less reciprocated by Dr. D. Brauns, the Rev. F. Smithe, Dr. Wright, and U. Schloenbach, who have made these shells a special study, and to whom I am indebted for many accurate observations and much useful material.

I had already said at p. 18 of the Appendix to the first volume of my British Fossil Brachiopoda, that I was ready to admit that *T. sub-punctata* is only the very adult state of *T. punctata*, but that I was not yet prepared to say as much with reference to *T. Edwardsii*. After fresh examination and comparison I am willing to admit that some specimens of the last-named shell do gradually merge into *T. punctata*; but it cannot be denied that far the larger number of full-grown individuals differ to some extent from Sowerby's species. Thus, for example, *T. punctata* is, in general, of an elegant oval shape, with sides and front rounded, and with valves almost equally and moderately convex; while *T. Edwardsii*, on the contrary, is a less elongated shell, much more massive or thickened, and usually nearly straight in front.

It is therefore, at any rate, a sufficiently marked variety, and should consequently retain its varietal denomination. Mr. E. Deslongchamps, indeed, although admitting the close relationship of both *T. sub-punctata* and *T. Edwardsii* to *T. punctata*, has preferred to retain them as separate species.

Some uncertainty seems to have prevailed in the minds of several palaeontologists with reference to *T. sub-ovoides* (Münster), Römer. It is quite evident that Römer's figure of that shell (Sup., Pl. XVI, fig. 11), published in the 'Die Versteinerungen des norddeutschen Oolitten-Gebirges,' p. 5, Pl. ii, fig. 9, 1836, entirely agrees with Sowerby's *T. punctata*; and the figure given by Oppel of *T. sub-ovoides*, in his 'Mittlere Lis Schwabens,' pl. iv, fig. 1, seems as if drawn from a well-shaped example of Sowerby's *T. punctata* (Sup., Pl. xvi, fig. 12). In his 'Untere Jura in nordwestlichen Deutschland,' 1871, Dr. D. Brauns describes *T. punctata* and *T. sub-ovoides* as distinct species; but subsequently in his 'Obere Jura' (393), 1874, he alludes to the possible identity of the two; and in a letter dated May 4th, 1876, he informs me that he considers *T. punctata* and *T. sub-ovoides* to belong to a single species. In corroboration of this statement he sends typical examples of *T. sub-ovoides* from the Zone of *A. Jamesoni* from
Rottorf, north of Helmstedt, which have been determined by Römer as his *T. sub-ovoides*. The Rottorf beds are identical with the lower beds of the Belenniten-Lias of Kahlefeld (see Römer) and Markoldendorf (as well as Warburg, south of the Teutoburg Wald). At p. 154 of his "Brachiopodes jurassiques" Mr. E. Deslongchamps describes and figures what he believes to be *T. sub-ovoides* (Römer), and as totally distinct from *T. punctata*. In 1876, however, at my request he made a further examination of the specimens sent him some years back by the late U. Schloenbach, and is now quite ready to admit that *T. sub-ovoides* is merely a synonym of *T. punctata*. Dr. Schloenbach had also changed his views on the same subject, and in the 'Journ. of the German Geol. Soc.,' Berlin, 1863, states that *T. sub-ovoides*, Röm., is identical with *T. punctata*, Sow. He subsequently proposed to M. Deslongchamps that a fresh name should be given to the species described and figured in the 'Pal. Franç.,' as *T. sub-ovoides*. We find also in the Upper Lias of Havesfield Beacon another form which Messrs. Etheridge and Walker thought might be a variety of *T. trilineata*; but as many of the smaller specimens are quite identical in shape and character with *T. punctata*, we have at any rate preferred to leave them provisionally under that group. It appears as if it were a connecting form between *Ter. trilineata* and *T. punctata*. Some elongated examples of Young and Bird's species can scarcely be distinguished from certain forms of *T. punctata*; these ovate shells are all very nearly allied, and it is difficult to define by words the small differences by which they can be distinguished. Perhaps it may be convenient to arrange the British forms allied to *T. punctata* somewhat in the following manner.

92. *Terebratula punctata*, *Sow.* Dav., Ool. Mon., p. 45, Pl. VI, fig. 1—10, 12 and 16(?); Sup., Pl. XVI, figs. 6—8, 11, 12, and var. 9, 10?

Terebratula punctata, *Sow.* Min. Con., vol. i, p. 46, tab. 15, fig. 4, 1812.

— sub-ovoides, *Römer.* Ool.-Geb., pl. ii, fig. 9, 1836.

—

— sub-punctata, *Oppel.* Mittl. Lias, t. iv, fig. 1, 1836.

— *Terebratula punctata*, *Dav.* Ool. Mon., p. 46, pl. vi, figs. 8 to 10 and 12 (non 7), 1851.

— punctata, *E. Desl.* Brach. Jurassiques, p. 160, pl. xii, fig. 3, pl. xi, figs. 1—9, pl. xii, figs. 1, 2, 1863.

— punctata et sub-ovoides, *D. Brauns.* Untere Jura im Nordwestlichen Deutschland, pp. 427 and 478, 1871; Obere Jura, p. 393, 1871.

The shell has been correctly described at pp. 45 and 46 of my Oolitic and Liassic Monograph. Now, although the typical shape of *T. punctata* is a regular elongated oval, many specimens are much more elongated, narrow, and almost straight or very slightly
rounded in front. Some, on the contrary, are almost circular and about as broad as long.

The beak is either slightly incurved, or so much so as to overlie the umbone of the opposite valve. The foramen which truncates its extremity is smaller in some examples than in others, and the deltidium is scarcely ever visible. The dorsal valve is, in the typical form, regularly, uniformly, and moderately convex, while in others it is flattened or depressed at the umbone and towards the front. The greatest breadth of the shell is usually towards the middle, but it is sometimes broadest anteriorly, while tapering posteriorly. It varies in dimensions from two to three lines to two inches and four lines in length. *T. punctata* occurs, in addition to the localities already quoted, in the Zones of *Am. Capricornus*, *A. margaritatus*, *A. spinatus* (Middle Lias), and of *A. jurensis* and *A. opalinus* (Upper Lias).

The Rev. F. Smithe has found it in the Marlstone and in the *Am. spinatus* bed, and indeed throughout the whole Middle Lias at Churchdown, in Gloucestershire, also in the Cephalopoda-bed, or *A. jurensis* Zone, under the earthy ferruginous band in the Upper Lias, at Havesfield Beacon in the same county. It occurs in the *Am. Ibex* Zone (Middle Lias) at Churchdown, chiefly in geodes, which occur frequently in those clays, but the matrix is so refractory that it is difficult to get them out in a complete condition (Smithe). It may be quoted also from the Middle Lias at Willingore Cutting (new line from Lincoln to Grantham), at Radstock &c. In Scotland, from the Island of Mull, Hallaig, Tobermory, and Dunrobin. It occurs on the Continent in many localities where the Middle and Upper Lias is represented.

Mr. J. F. Walker is of opinion that *T. sub-punctata* should be retained as a variety to include the large shell from the Marlstone of South Petherton.

Sufficiently described at p. 30 of my Monograph. It is very abundant in the Middle Lias, or Zone of *Am. margaritatus* and *A. spinatus*, near Ilminster, and especially in the first-named Zone at Churchdown, Gloucestershire (Rev. F. Smithe).

Shell elongate, ovate, slightly rounded in front; valves often very convex and inflated. Ventral or larger valve uniformly convex, slightly deeper than the opposite one; beak large, thickened, very much incurved, and overlying the umbone of the opposite valve, truncated by a small circular foramen. Dorsal valve very convex, slightly depressed near
the front. Surface smooth, marked by concentric lines of growth. Proportions variable; two specimens measured—

Length 14; width 9; depth 9 lines. Length 10; width 7; depth 6 lines.

Obs.—This seems a tolerably marked variety; it differs from T. punctata proper by its large strongly incurved beak and very small foramen, also by the greater convexity of its valves, and by a depression in the front line, which in T. punctata is either straight or slightly convex. It is the shell alluded to by Mr. E. B. Tawney in his paper on the Lias of the neighbourhood of Radstock ('Proceedings of the Bristol Naturalists' Society,' vol. i, p. 157, 1874), in which it is said—"We may cite as characteristic of our Middle Lias a form which we take to be T. sub-ovoides (Römer). It is so constant in its form that it seems perhaps entitled to the rank of a distinct species; it is more elegant than T. punctata, but I am by no means sure that it has not been included by Mr. Davidson under that species." This form seems to agree pretty nearly with some specimens of the shell described by Mr. E. Deslongchamps at p. 154, pl. xxxvii, fig. 4, and pl. xxxviii, figs. 1—8 of his "Brachiopodes jurassiques" as T. sub-ovoides, Römer, an identification he now admits to be erroneous. It is stated by Mr. Tawney to occur in the Middle Lias at Huish Quarry, near Radstock, where it appears to be rather abundant. Perhaps figs. 9 and 10 are referable to the variety under description.

Shell broadly oval, valves moderately and regularly convex, slightly depressed near the front; beak incurved and truncated by a moderately large foramen; beak-ridges sharply defined, surface smooth.

Length 1 inch 10 lines; width 1 inch 7 lines; depth 1 inch.

Obs.—This is the shell which Messrs. Etheridge and Walker thought, perhaps rightly, might be a variety of T. trilineata, and proposed for it the designation of sub-trilineata. It occurs in the same bed with T. punctata, and so much resembles specimens of the last-named species that I have preferred to leave it among the varieties of Sowerby's species. It proves the close connection between T. trilineata and T. punctata. It occurs in the Upper Lias Sand (Midford Sands) at Frocester and Havesfield Beacon in Gloucestershire, from which locality specimens have been sent me by the two gentlemen above named, as well as by the Rev. F. Smithe, of Churchdown. Some good examples may likewise be seen in the Museum of the School of Mines. It also agrees with some specimens of T. sub-punctata figured by Mr. E. Deslongchamps in Pl. xxxix of his "Brachiopodes jurassiques."

Terebratula Jauberti, E. Dest. Brach. Juras., Pal. Fr., p. 176, pl. xlv, figs. 8—11; pl. xlvi, figs. 1—4; pl. lxvii, figs. 1—4, 1863.

Shell almost circular or oval; rather longer than wide. Valves uniformly and almost equally and moderately convex or deep, without fold or sinus. Beak incurred, and truncated by a small circular foramen separated from the hinge-line by a wide deltidium in one piece. Beak-ridges sharply defined. Loop simple, short. Surface of shell smooth.

Length 1 inch 4 lines; width 1 inch 3 lines; depth 8 lines.

Obs.—I have seen only an incomplete specimen in the Museum of the School of Mines, London, stated to be from the Middle Lias near Ilminster. M. Deslongchamps assures me that it belongs to his _Terebratula Jauberti_, and that it agrees with the specimens figured by him in his "Brachiopodes jurassiques," pl. lxvii. Our English example agrees well with the types that occur at Blemard and at a great many other places in France and in Spain.

97. Terebratula ovoides, Sow. Dav., Ool. Mon., p. 48, Pl. VIII, figs. 4, 5 only; Sup., Pl. I, figs. 12, 13 (14, 15, 16?).

We have stated all we know concerning this species at pages 9—11 of the Drift Supplement. It occurs in the Drift of Suffolk, and it is still uncertain whether it is of Cretaceous or Jurassic age.

98. Terebratula (?) Hudlestoni, Walker, MS. Sup., Pl. XVII, figs. 14, 15, 16.

Shell elongate ovate, broadest posteriorly, tapering anteriorly; sides rounded, nearly straight in front. Dorsal valve moderately convex, with a wide, slightly raised, rounded fold, chiefly observable near the front. Ventral valve with a broad, shallow sinus commencing close to the front, and corresponding with the elevation in the opposite valve. Beak small, incurved, and truncated by a circular foramen slightly separated from the hinge-line by a narrow deltidium. Surface smooth, marked here and there by a few concentric lines of growth. Loop not known.
Length 8, width 6, depth 4 lines.

Obs.—This small species rarely exceeds the dimensions above given, and it is usually smaller. It is remarkable on account of its small raised wave in front, and its almond shape. It occurs, according to Mr. Walker, in great numbers in the Lower Calcareous Grit. It is often found in masses, specimens of which may be seen in the York Museum. It has been named by Mr. J. F. Walker after W. H. Hudleston, Esq., F.G.S., who has done good work among the Oolitic Rocks of Yorkshire.

99. Terebratula sphæroidalis, Sow. Dav., Ool. Mon., p. 56; Pl. IX, figs. 9—18 (not 19), and Appendix to vol. i, Pl. A, fig. 16.

I believe I was in error in stating (at page 56 of my Oolitic Monograph) that Ter. sphæroidalis and T. bullata belonged to one species. Mr. E. Deslongchamps, in vol. ii of the ‘Bulletin de la Société Linneéenne de Normandie,’ p. 44, pl. iv, figs. 11—13, 1857, refers some forms to T. sphæroidalis to which he subsequently in his “Brachiopodes Jurassiques” gave the name of T. conglobata. I consider he was right in doing, as they differ sufficiently from Sowerby’s T. sphæroidalis to be separated from that shell. I think, however, he was mistaken when he followed me in placing T. bullata as a synonym of the species under description. The bipation observable in T. bullata is quite sufficient to distinguish it from T. sphæroidalis. I am supported in this view by Mr. J. F. Walker, who has made a special study of these species. T. sphæroidalis always presents a more or less globular or gobose shape, like a marble or billiard-ball. Sometimes after an interruption in growth (on resuming which it becomes suddenly inflated) a wide ring is formed round its margin.

A foreign example in the British Museum, of which I gave a figure in the ‘Annals and Mag. of Nat. Hist.,’ 2nd ser., vol. 9, pl. xiv, measures 24 lines in length by 23 in width, 21 in depth. Mr. E. Deslongchamps figures equally large specimens from the neighbourhood of Niort (Deux Sèvres), but none of our British examples have attained quite as large proportions.

It occurs in the Inferior Oolite, but according to Mr. E. Deslongchamps in the beds characterised by Am. opalinus and Am. Murchisoni. It appears in the beds containing Am. Sauzei, but is especially abundant in the Zone of Am. Humphriesianus, and attains its largest size in that of Am. Parkinsoni.

I figured this species as probably a variety of T. sphæroidalis, but Dr. Oppel may be correct in separating it from Sowerby’s species. It is generally of a circular shape and much thickened at the margin. Some specimens are slightly longer than wide, and somewhat laterally pinched in at the posterior half of the shell. The valves are uniformly convex and smooth, the beak small and much incurved, and truncated by a minute foramen. The loop is not known. It occurs in the Inferior Oolite at Dundry, near Bristol.

Nothing new. It occurs in the Upper Lias, zone of Am. bifrons with Rhyn. pygmaea. Mr. E. Deslongchamps states that it has been found in the Leptena-bed, or highest portion of the Upper Lias. The Rev. F. Smithe met with it in the Middle Lias, or zone of Am. spinatus.

It occurs at Evrecy, Landes, Curey, Anayi-sur-Gard, and Croisilles in Normandy, also in the Dep. du Gard, near d’Alias, and at the Pic de Saint-Loup, near Montpellier.

These and perhaps two or three more bicipled forms, seem so nearly related that it is often very difficult to determine which of them are distinct species, or if some of them are more than varieties, or variations in shape, of one or more species.

As Oppel, Deslongchamps, Walker, and others express a decided wish to retain the majority as separate species, it is desirable to meet their views as far as possible.

102. Terebratula globata, Sow. Dav., Ool. Mon., p. 54, Pl. XIII, figs. 2, 3 (Sowerby’s types) 4 5, 6, 7 (?); Sup., Pl. XVII, figs. 1 (2 ?).

I cannot help repeating what I stated at p. 54 of my Monograph, namely, that
"T. globata is one of those shells the continual variations of which render it most difficult to describe." I endeavoured in Pl. XIII to illustrate not only Sowerby's original examples (figs. 2 and 3) now in the British Museum, but likewise what appeared to me, at the time, some of its modifications in shape. Subsequently in his 'Die Jura-Formation,' Dr. Oppel raised my specimen fig. 4 to the rank of a distinct species under the designation of Ter. Eudesi, and made of fig. 7 his Ter. Fleischieri. After a careful re-examination of the specimens I made use of when drawing up my description of T. globata, it seems to me that the specimens from the Inferior Oolite of Dundry (fig. 4) might be separated from T. globata proper, but I cannot help questioning whether the more or less elongated form to which Oppel gave the name of T. Fleischieri is more than a modification of Sowerby's species. The specimens 6 and 7 from Birdlip were all found together in the Inferior Oolite, and it is easy to perceive when dealing with a number of individuals that some of them became more elongated than others, but without diverging from the essential characters belonging to the species. Mr. J. F. Walker seems to think, and I will not assert he may not be correct, that the Birdlip form (Supl., Pl. XVII, fig. 1) should be considered a variety of the typical form from Nunney, near Frome (Min. Con., tab. 436, fig. 1), although I am at a loss to define the difference.¹

Mr. Lycett observes at p. 134 of his Handbook on the Cotteswold Hills, when treating of T. globata, that "The Cotteswold variety" (my Sup., Pl. xvi, fig. 1) "of this shell differs materially from the typical or Dundry type" (the shell subsequently named T. Eudesi by Oppel), "and as it occurs in immense abundance through the upper beds of the Inferior Oolite, extending the whole range of the Cotteswolds, the difference is worthy of notice. The figure of the Cotteswold variety is more elongated, the anterior folds being very strongly defined. Between this form and T. Phillipsii the transition is so gradual, that after the inspection of a good connecting series of specimens confidence in the specific value of T. Phillipsii is much lessened. Fine typical examples of T. Phillipsii do not occur higher up than the "Fimbria-stage" of the Inferior Oolite, where it is rare. Another constant companion of T. globata, and nearly resembling it, is a form usually attributed to a small variety of T. perovalis; equally abundant with T. globata, its only distinction consists in a more depressed form and smaller anterior folds. In this instance, not less than in T. Phillipsii, we find the same gradual transition in form." Mr. E. Deslongchamps, in vol. 2 of the 'Bulletin of the Linnean Society of Normandy,' informs us that the specimens from the "Calcaire de Caen" are very similar to those found in England. Those of the "Oolithe blanche" are more flattened and wider, and the two folds are more separated;

¹ Mr. C. Moore informs me by letter, "I have gone over the ground between Nunney and Frome dozens of times and have never seen a Brachiopod. The only bed of Inferior Oolite is just by Nunney, and it is not open. It occurs in patches on the Carboniferous Limestone. The horizon of the T. globata would be that of Dundry. I should be inclined to think that the T. bullata, especially as Sowerby states it comes from the same locality, is a variety of T. globata." The Inf. Ool. may, however, have yielded forms in 1823, when Sowerby described his species.
they then approach somewhat in shape to *Ter. Phillipsii*, but may always be distinguished by their smaller size and their inflated beak from the varieties of *T. Phillipsii* where the folds are of less length than in the type. It is certain that most of the biplicated forms of *Terebratula*, whether they occur in the Jurassic, Cretaceous, or Tertiary formations, can, by the means of exceptional examples, be more or less intimately connected, forming a great group of shells characterised by two folds. Indeed, it is a question still to be solved whether some of these have not continued to live on through the Jurassic and Cretaceous into the Tertiary period, for in all these formations there are some of these prevailing and perplexing forms. They appear, however, to have become extinct at the conclusion of the Tertiary period, since they are not, as far as our present knowledge bears us out, represented in the living state in our seas. Now, although these biplicated forms can be more or less nearly connected by taking exceptional or passage forms into consideration, most of them are, as far as species will permit, somewhat dissimilar when adult examples are taken into consideration, and it would be quite wrong to seek to unite into a single species *T. Phillipsii* and *T. globata*, or many others that might be named. *T. perovalis* and *T. globata* are, as far as species go, distinct, although they may in a manner be connected by passage forms to *T. intermedia*, *T. ventricosa*, *T. bisuflarciata*, and others. For the purposes of geology certain named forms are absolutely necessary; but in defining these the palæontologist must not forget general characters, or seek to elevate to the rank of a species every deviation from the typical form, typical only in his own imagination, and because they have been selected by him to represent his idea of his species.

T. globata attained 18 lines in length, by 17 in width, and 12 in depth. It occurs in many localities where the Inferior Oolite is found. Sowerby’s original type came from Nunney, near Frome. It is found likewise in the Fuller’s Earth near Bath.

103. Var. *Fleischeri*, Oppel. Dav., Ool. Mon., Pl. XIII, fig. 7; Appendix to Vol. I, Pl. A, fig. 18; and Sup., Pl. XVII, fig. 2.

According to Oppel’s view this shell is elongated oval and somewhat closely biplicated near the front, with valves smooth and very convex; beak moderately incurved, and truncated by a circular foramen slightly separated from the hinge-line by a deltidium in two pieces. Some specimens have measured 17 lines in length, by 12 in breadth, and 11 in depth. It occurs, with my typical form of *T. globata*, in the Inferior Oolite of Birdlip, near Cheltenham.
104. Terebratula Eudesi, Oppel. Dav., Ool. Mon., Pl. XIII, fig. 4; and Sup., Pl. XVII, fig. 4.

Shell globose, very slightly longer than wide; valves very convex in their posterior half, becoming almost gibbous. In profile the dorsal valve presents a very convex line to within a third of the length of the valve, where it becomes gradually and slightly concave till it reaches the front. The lateral marginal line is very sinuous, assuming an M shape in front. There exists two rounded folds near the front, rather close together and separated by a narrow sulcus. Corresponding with the sulcus, there exists in the ventral valve a short rounded ridge or plait with a shallow sulcus on either side. The beak is large and closely curved over that of the opposite valve, and truncated by a small circular foramen. Surface smooth and scarcely marked by concentric lines of growth.

Length 12, depth 11 lines.

The type of this species was obtained from the Inferior Oolite at Dundry, and it is questionable whether it is not the shell intended by Sowerby as his T. globata; but as some uncertainty on the matter seems to prevail I think it will be best to let the matter rest as here detailed.

105. Terebratula bullata, Sow. Dav., Ool. Mon., Pl. XI, fig. 19; and Sup., Pl. XVII, fig. 5.

Sowerby describes his species in the following words:

"Spec. Char. Orbicular, ventricose, with a produced and incurved beak; front indented; depth greater than its width. A remarkably ventricose species; from its indented front there proceeds a little way towards the beaks an obscure furrow in each valve; the edges retain a regular level; in some states of preservation the worn surface is minutely punctated, but this is seldom observable. It is distinguished from the globose variety of T. digona, tab. 96, by the narrowness of its front. Collected in abundance at Nunney, near Frome, by the Rev. J. Ireland; it has also been found at Bridport."

I have mentioned why this species should be separated from T. sphaeroidalis, but it
does not seem to differ very much from *T. Eudesi*; and it is still questionable whether the last named species (?) is more than a variety of *T. bullata*.

T. bullata does not generally seem to have much exceeded 12 lines in length by 10 in width, and about the same in depth.

It has been found by Mr. J. F. Walker in the Fuller’s Earth at Orchardleigh, in Somersetshire.

Shell sub-pentagonal, a little longer than wide, broadest about the middle. Valves convex, of about equal depth. Sides broadly rounded, slightly indented in front. Dorsal valve somewhat ventricose, and gently biplicated near the front, with a shallow concave groove between the two small rounded ribs. Ventral valve nearly uniformly convex, the slightly marked concave depressions corresponding with the two ribs in the opposite valve are very shallow. Beak moderately projecting, incurved, and truncated by a circular foramen, slightly separated from the hinge-line by two very small deltidial plates. Hinge-ridges scarcely defined. Surface smooth, marked by a few concentric lines of growth.

Length 13, width 11, depth 9 lines.

Obs.—This species (?) is more pentagonal in shape than is either *T. bullata* or *T. globata*, but is still closely related to both. It was found by Mr. J. F. Walker in the Lower Calcareous Grit at Filey, on the Yorkshire Coast.

Shell obscurely pentagonal, longer than wide. Valves almost equally convex or deep; dorsal valve strongly and sharply biplicated at its anterior half, a deep angular sulcus existing between the two projecting folds. Some specimens show likewise a tendency to the formation of a rib close to the posterior margin. Ventral valve with a wide angular central rib and a deep sulcus on either side; beak tapering, slightly incurved, and truncated by a circular foramen, separated from the hinge-line by a narrow deltidium in two pieces. Two specimens measured—

Length 14, width 10, depth 9 lines.

,, 12, ,, 10, ,, 7 ,,.
SUPPLEMENT TO THE BRITISH

Obs.—This biplicated species exactly resembles the figures of the specimens so named by Mr. E. Deslongchamps at p. 96 of his ‘Brachiopodes jurassiques.’ The French palæontologist describes his shell as from the Fuller’s Earth, while our British specimens, according to Mr. J. F. Walker, occur in the Inferior Oolite of Bradford Abbas, in Dorsetshire.

Another small biplicated Terebratula, Sup., Pl. XVII, fig. 6, occurs in the Bradford Clay, at Tetbury Road Station, to which I have not ventured to give a specific name, as it bears resemblance to certain specimens of T. Ferryi.

108. Terebratula Etheridgii, Dav. Appendix to Vol 1, p. 20, Pl. A, figs. 7, 8.

Nothing new. Inferior Oolite under Pea-grit, Leckhampton Hill, Cheltenham. T. equestris, d’Orb., Appendix, Pl. A, fig. 9, is, perhaps, the same species as T. Etheridgii?

Nothing new. From the Perna-bed, at the top of Inferior Oolite, and in the Inferior Oolite, Minchinhampton. Mr. E. Deslongchamps states that this species has been collected by Mr. Schlumberger in the beds with A. Murchisonæ in the Department of the Manche. It has also been obtained by the distinguished author of the ‘Brachiopodes jurassiques’ in many French localities, such as Tennie, Chaumiton, Fortaport, and other places (Sarthe), in the neighbourhood of Alençon (Orne), at Doué (Maine-et-Loire), Montreuil-Bellay, Miseré, Vienne, &c., (Deux Sevres), at Marbache, Longwy, &c. (Meurthe-et-Moselle).

Nothing new. Inferior Oolite.

111. Terebratula plicata, Buckman. Dav., Ool. Mon., p. 60, Pl. XII, figs. 1—5.

This fine species appears, from what M. Deslongchamps states at p. 196 of his ‘Brachiopodes jurassiques,’ to be common in England, but very rare in France. The
first specimen was alluded to by d’Orbigny from Tournus (Saône-et-Loire), two others were found by M. De Ferry at Chintre (Saône-et-Loire), and two more in the neighbourhood of Sémur (Côte d’Or) in the lower portion of the “Calcaire à Entroques,” that is to say, the zones of *Amm. Murchisonae* or Infra-Oolitic Marls.

Mr. Lycett observes in his ‘Handbook on the Cotteswold Hills,’ p. 164, that “this species is usually separable into two forms or varieties, which may be distinguished during their entire growth. The first or larger form is the more rounded, the anterior border is destitute of plications; the adult condition has marginal folds, which pass backwards only a short distance from the border. The second or smaller form is more oblong and compressed laterally; the young condition has marginal folds, which in the adult state become deep and lengthened, extending backwards almost to the beak; the concentric lines of growth are likewise strongly marked. It is probable that these differences are referable to distinctions of sex.”

Mr. Lycett further informs me that the two varieties are well represented in my Pl. XII, figs. 11 and 6, representing the young and the adult form of the one; figs. 12 and 10 the corresponding forms of the other; all of their usual dimensions. Both occur in the same bed of the Inferior Oolite.

T. fimbria, as far as I am aware, does not appear to have been hitherto found in France.

Nothing new. It occurs in the Cornbrash of Rushden, Northamptonshire, and in the same formation near Scarborough (Leckenby Collection; Woodwardian Museum, Cambridge), and has been obtained by Mr. J. F. Walker in the Cornbrash of Yaxley or Stilton, near Peterborough.

Nothing new. Continues to be very rare. Only recorded from the Inferior Oolite, near Minchinhampton.

Mr. C. Moore informs me that this species has the loop of a *Terebratula*, and must therefore be removed from *Terebratella*. I have never, however, seen the perfect loop, and I cannot therefore speak authoritatively upon the subject.

Mr. Etallon has described under the name of *Megerlia tennicostata*, and the Frère Ogèren under the name of *T. Dallozi*, a small shell (which I cannot distinguish from *T. hemisphærica*) from Valfin, near St. Claude, in France, and which Mr. Bayan has also found at Tonnerre in beds of a similar age. This bed, according to Mr. Bayan, corresponds to the base of the Kimmeridge Clay, or the middle of that formation which the French geologists now term Séquanien.

T. hemisphærica occurs in the Great Oolite in England at Hampton Cliff, near Bath; and larger examples have been met with in the same formation at Luc and Laugrune, in Normandy.

Shell minute, broadly rounded, nearly straight in front, slightly longer than wide. Dorsal valve moderately biconvex or longitudinally divided by a narrow depression; ventral valve evenly convex, beak very slightly incurved and truncated by a circular
foramen, separated from the hinge-line by a narrow deltidium. Surface smooth. Loop not known. Dimensions half a line in length by a little less in breadth.

Obs. This is an exceedingly minute shell, and might be the young stage or fry of some other described species. I have seen seven specimens which were all alike and of the same dimensions. The drawings of this shell published in 'The Geologist' are not quite correct, as the depression dividing the smaller valve is not represented. The interior of the dorsal valve was not complete, but it exhibits a longitudinal central ridge. This minute species (?) was found by Mr. C. Moore in the Great Oolite of Hampton Cliff, Bath.

118. Terebratula coarctata, Parkinson. Dav., Ool. Mon., p. 59, Pl. XII, figs. 12—14; and Sup., Pl. XIV, figs. 18, 19.

Subsequent to the publication of my description of T. coarctata and T. reticulata (Smith) as a single species, in 1851, much difference in opinion has been expressed with reference to the above combination. Some palaeontologists would follow the view I then expressed; others would maintain T. reticulata as a named variety of coarctata; while some would consider it a distinct species, and especially the shell described and figured by Sowerby as T. reticulata? Smith. Sowerby was evidently not certain that his T. reticulata was the same as that of Smith, for he places a note of interrogation after the name and before that of Smith.

In the fourteenth volume of the second series of the 'Bulletin of the Geological Society of France' (1856), Mr. Kœchlin-Schlumberger, when treating of T. coarctata (Park.), T. reticulata (Smith or Sow.), and T. Richardiana (d'Orb.), enters upon an elaborate review of the whole question, and concludes that the two first named should be referred to the same species. Bronn follows Morris and suppresses T. reticulata. Much stress is laid by some palaeontologists on the statement that Smith's T. reticulata is more elongated in shape, showing scarcely any fold, and that the reticulation of the surface is much finer than in Parkinson's species, and also upon the fact that the geological horizon is different.

If we examine Smith's figure of T. reticulata in the plate facing page 30 of his 'Strata Identified by Organic Fossils,' 1816, we find that in essential characters it agrees with T. coarctata; it is not an elongated, but a broad pentagonal shell, with well-defined mesial fold, and it is stated to occur in the clay over the Upper Oolite, whence Sowerby states T. coarctata comes. Palaeontologists would therefore, I think, be justified in considering Smith's T. reticulata a synonym of coarctata.

If the form called T. reticulata? by Sowerby, and occurring in the Inferior Oolite of
Nunney and Whatley, near Frome, be really distinct, we must add Sowerby's name, and not that of Smith, to the variety or species.

Mr. E. Deslongchamps in his "Notes sur le Terrain Calloviens," vol. 4 of the 'Bulletin of the Linnean Society of Normandy,' retains *T. reticulata*, Sow., for a shell much resembling Smith's figure. He adds that it appears first in the bed characterised by *Ostrea Knorrii*, when it much resembles *T. coarctata*; but when found in higher beds of the Callovian period it widens more and more, the sinus becomes broader, and the shell is at last almost smooth.

Sowerby states that in *T. coarctata* "the minute bristles that render the surface hispid are short, often tubular, and are situated upon the angles of intersection of the two sets of lines, of which the longitudinal are elevated and cut by the transverse;" and that in *T. reticulata* "the ridges are not much elevated, and the spines hardly rise above the surface, but appear as if pressed into it."

M. Koechlin-Schlumberger observes, in reference to the reticulated surface, that the number and strength of the striae are much greater in some specimens than in others, just as is seen to be the case with *Rh. spinosa*. That in some specimens they are coarse and fewer in number, and in others more numerous and much less sharply defined.

Mr. J. F. Walker considers *T. coarctata* from the Bradford Clay and Great Oolite near Bath to be specifically distinct from *T. reticulata*, Sow., from the Inferior Oolite of Frome. It may therefore be desirable to retain the name *reticulata*, Sow., as at least a named variety. A large example of *T. coarctata* (Sup., Pl. XIV, fig 18) in the Museum of the School of Mines is stated, on the tablet, to be from the Cornbrash of Handthorpe, near Bourn, in Lincolnshire.

119. Var. reticulata, Sowerby. Dav., Ool. Mon., Pl. XII, fig. 15; Sup. Pl. XIV, figs. 20, 21.

Terebratula reticulata, Sow. Min. Con., tab. 312, figs. 5, 6, Nov., 1821.

Sowerby describes his species in the following words:

"Spec. Char. Obovate, gibbose, subhispid, decussated; front obscurely 3-sided; lesser valve convex; larger valve obtusely biplicated, with a shallow channel between the ridges.

"*Terebratula reticulata*? Smith.

"The general form of this is much rounder than the last; the ridges are not much elevated, and the spines hardly rise above the surface, but appear as if pressed into it; it is also a larger species."
SUPPLEMENT, PLATE IX.

1—9. **Lingula ovalis**, Sow. 1. Type, after Sowerby's 'Min. Con.', tab. 19, fig. 4; from the Drift, Pakefield, Suffolk. 2. Another specimen from the Drift. 3. From the Kimmeridge Clay, Shotover, Oxford. This is the largest example of this species in the Oxford Museum. 4—6. From the Kimmeridge Clay of Ely, 7 and 8. From the Kimmeridge Clay of the Sub-wealden boring near Battle, Sussex. These were the first specimens obtained from the boring by Mr. Peyton, and were identified by Prof. Phillips. University Museum, Oxford. 9. From the Kimmeridge Clay of France, found by Mr. Peyton between Boulogne-sur-Mer and La Crèche. (P. 74.)

10—12. **Beauuii**, Phillips. Inferior-oolite Sands, the Peak, Yorkshire. 10. After Phillips's type figure, 'Geol. of Yorkshire,' pl. xi, fig. 24. (P. 78.)

14. (?). Inferior-oolite Sands, Mr. Leckenby's Collection, and Woodwardian Museum, Cambridge. (P. 78.)

15—20. **sacculus**, Chapuis and Dewalque. 15—17. From the Marlstone (Middle Lias), Bathford, cutting of the Great Western Railway. A more perfect example is figured, Suppl., Pl. X, fig. 25. 18. From the Middle Lias of Raasay, Scotland. Mr. R. Tate's Coll. 19. From the Marlstone, Addlebury, Oxon. The Rev. P. B. Brodie's Coll. 20. (After the figure given by Chapuis and Dewalque.) From the Macigno (Lias), Aubange, Province of Luxemburg. (P. 79.)

23. **Davidsoni**, Oppel. From the *Ammunites oxynotus* Shales, Lower Lias, Gloucestershire. After Dr. Oppel's figure. 23 a. Enlarged. (P. 76.)

24—26. **Longo-viciensis**, Terquem. 24 and 26 are from the Upper Lias, Long Acres Pit, Skelton, Yorkshire. 24 a and 26 a. Enlarged. 25. A typical example sent to me by M. Terquem, Upper Lias, Longwy, Moselle, France. (P. 75.)

27—30. **Metensis**, Terquem. 27 and 28. From the Lower Lias of Stonehouse, Gloucestershire. 28. Coll. of School of Mines, London. 29. After Terquem's original figure. 30. Another French example sent to me by M. Terquem, as representing his species. 28 a and 29 a. Enlarged. (P. 77.)

31. sp. Coral-rag, Wheatley.

32—35. **Crania canalis**, Moore. Raggy beds of the Inferior Oolite, Dundry. Mr. C. Moore's Coll. 32 a, 33 a, and 34 a. Enlarged. 35. Shows the size of the largest example hitherto discovered. (P. 90.)

36, 37. **antiquior**? Described and figured by Mr. C. Moore as *C. Pennsurti*, Deslong. Coralline Beds (Great Oolite), Hampton Cliff, Bath. Mr. C. Moore's Coll. (P. 89.)

40, 41. **Gumberti**, Desl. (according to Mr. C. Moore.) Middle Lias, Whatley. Mr. C. Moore's Coll. (P. 90.)
SUPPLEMENT, PLATE X.

Fig. 1—6. **Discina reflexa**, Sow. 1—2 a. Types. Inferior-oolite Sands, the Peak, Yorkshire. 3. Attached to *Leda ovum*, Grantham, Lincolnshire. Museum of School of Mines. 4. Alum-shale, Upper Lias, Skelton Park Pits, Yorkshire. Mr. R. Tate’s Coll. 5. One of the original examples of *Patella texis* (Sow., ‘M. C.’, tab. 139, fig. 4), Alum-shale, Whitby. British Museum. 6. Interior of smaller valve, attached to an *Ammonites cornucopia*, Upper Lias, south of Whitby, Yorkshire. Mr. Blake’s Coll. (P. 82.)

7, 8. "Holdeni (?)", Tate. 8. An enlarged figure of the interior of the smaller valve from *An. Bucklandi* zone, Lower Lias. Newbold (Rugby School). (P. 83.)

9, 10. "orbicularis", Moore. 9 a, b. Enlarged. From the Fish-bed and Clays of the Upper Lias, Ilminster. Mr. C. Moore’s Coll. (P. 83.)

12. "Holdeni, R. Tate. 12 a. Enlarged. Attached to a specimen of *Astarte Gueuxii*. From the Lower Lias of the Island Magee, County Antrim. (P. 85.)

16—19. "latissima", Sow. 16. Specimens with shell preserved (which is a rare condition). From the Kimmeridge Clay, Sub-wealden boring, Netherfield, near Battle, Sussex, from a depth of 633 feet. 17 and 18 are after the original specimens (‘Min. Con.’, tab. 139, figs. 1 and 3), British Museum. 19. Another of Sowerby’s specimens, from Pakefield, in Suffolk. In the same erratic blocks, with the *Discina*, were found specimens of *Lingula ovalis*. (P. 80.)

21—24 "(Orbiculoidae) Babeana, D’Orb. (= D. Townshendi, Forbes), Rhetic Beds. 21, 23, and 24, are from Vallis, Frome. 22. From Beer-Crowcombe. Mr. Moore’s Coll. (P. 87.)

25. *Lingula succulcus*, Chapuis and Dewalque. A fine specimen, from the Middle Lias (Marlstone), Limpley-Stoke, near Bath. Mr. Moore’s Coll. (P. 79.)

27—29. *Leptana Davidsoni*, Desl. 27. Upper Lias, Ilminster. Mr. Moore’s Coll. 28, 29. From the Upper Lias of May, near Caen, France. 29. Hinge-area and deltildium enlarged. (P. 91.)

30 "rostrata, Desl. Middle Lias, Whatley. Mr. Moore’s Coll. 30 a, b. Enlarged. (P. 92.)

31, 32. *Spiriferina oxyptera*, Buv. 31. From the Middle Lias, Huntcliff, Yorkshire. Mr. R. Tate’s Coll. 32. Middle Lias, Bay of Caisig, Isle of Mull, Scotland. (P. 99.)
SUPPLEMENT, PLATE XI.

Fig. 1—5. *Spiriferina oxygona*, E. Desl. Middle Lias (*Am. spinatus* zone), Kings Sutton, Northamptonshire. Mr. Beesley's Collection. (P. 100.)

6., *rostrata*, Schl. Interior of dorsal valve, showing position of spiral coils. After E. Deslongchamps. (P. 95.)

7., *Hartmanni*, Zieten. Interior, showing position of spiral coils. After E. Deslongchamps. (P. 95.)

8., *pinguis*, Zieten. Interior, showing position of spiral coils. After E. Deslongchamps. (P. 96.)

9, 10., *verrucosa*, von Buch. 9. Exterior. Middle Lias, near Cheltenham. 10. Interior of dorsal valve, showing the position of spiral coils. After E. Deslongchamps. (P. 97.)

11., *Signiensis*? Lower Lias, Eston, Yorkshire. Mr. R. Tate's Collection. (P. 99.)

12., *Deslongchampsi*, Dav. Middle Lias, Whatley. Mr. C. Moore’s Collection. (P. 101.)

13—15., *oolitica*, Moore. Enlarged. 15. Interior of dorsal valve. Inferior Oolite, Dundry. (P. 102.)

17, 17 a, b. *Spiriferina*? *minima*, Moore. Enlarged. Inferior Oolite, Dundry. (P. 103)

22., *obesa*, Moore. Enlarged. Lower Lias, Stout’s Hill. Mr. Moore’s Collection. (P. 114.)

29. *Lingula ovalis*, Sow. A large example from the Kimmeridge Clay, Weymouth. (P. 74.)

30. *Discina latissima*, Sow. Large crushed specimen, from the Kimmeridge Clay, Fullthby. Mr. Blake’s Collection. (P. 80.)

31., *elevata*, Blake. Lower Kimmeridge beds, Lincolnshire. (P. 81.)

32., *Holdeni*, Tate. Showing curious radiating lines. Lower Lias, Harbury, Warwickshire. Mr. Beesley’s Collection. (P. 85.)

1 Figures 18, 19, 20, 21, 23, and 24, are after Mr. C. Moore's published figures.
SUPPLEMENT, PLATE XII.

All the figures in this Plate are copied from those drawn by Mr. West, and published in the 'Proceedings of the Somersetshire Archaeological and Natural History Society,' 1854. They illustrate specimens in the Collection of Charles Moore, Esq., F.G.S.

Fig.
1—5. *Thecidium granulosum*, Moore. 1. Perfect shell, enlarged. 2. Interior of ventral valve, enlarged. 3. Interior of dorsal valve, enlarged; *m*, the perfect calcified supra-membraneal disk; *s*, septum. 4. Another enlarged dorsal valve, showing the bridge, visceral cavity, loop, granulated ridge, and solid portion of supra-membraneal disk. 5. Interior of dorsal valve, enlarged. Inferior Oolite, Dundry. (P. 110.)

SUPPLEMENT, PLATE XIII.

Fig.
1—3. *Thecidium Bouchardi*, Dav. Enlarged. 1. Perfect shell, showing the comparative size of the dorsal valve and the wavy margin of the larger one, also the area and deltidium. After a figure published by Mr. C. Moore. Inferior Oolite, Dundry. Mr. C. Moore’s Collection. (P. 106.)

4. " " var. (?). Enlarged. Upper Lias, Ilminster. Mr. C. Moore’s Collection.

13. " " After Mr. R. Tate’s figures, ‘Geol. Mag.’ vol. vi, 1869. Mr. R. Tate’s Collection.

17—19. *Discina Humphriesiana*, Sow. Perfect specimens from Trouville, Normandy; here figured to complete the description of the species, and taken from figures published by M. E. Deslongchamps. (P. 81.)

SUPPLEMENT, PLATE XIV.

1—3. *Terebratula*? vel *Megerlia*? *Perrieri*, Desl. 1. Natural size. 1a, b, c, d. Enlarged. 2. Showing the area, sunk deltoidal plate, and teeth of the ventral valve; very much magnified. 3. Part of the hinge-line of the dorsal valve, to show the hinge-plate, small cardinal process, and septum; much enlarged. Middle Lias, Whatley. Mr. Moore’s Collection. (P. 120.)

4—6. " (?) *Suessi*, Desl. 4. Natural size. 4a, b. Enlarged. 5. Portion of the interior of the dorsal valve, to show hinge-plate and part of the loop. 6. A dorsal valve, magnified, to show large muscular impressions. Middle Lias, Whatley. (P. 119.)

10. " var. *Dundriensis*. Inferior Oolite, Dundry. 10. Natural size. 10a, b, c. Enlarged. Mr. C. Moore’s Collection. (P. 117.)

15, 16a, b. " *furcata*, Sow. 15. Natural size. 15a, b. Enlarged. 16a shows the perfect loop, enlarged. (P. 115.)

SUPPLEMENT, PLATE XV.

Fig. 1—3. *Terebratula bisuffarcinata*, Zeiten, non Schlotheim. From the Coralline Oolite (zone of *Am. perarmatus*), Braambury Hill, Brora, Sutherlandshire. (P. 124.)

4. ,, *Joassi*, Dav. Upper Oolite (Kimmeridge Clay), Garty, Sutherlandshire. (P. 124.)

5—7. ,, *insignis*, var. *Maltonensis*, Oppel. 5. From the Coral-rag of Malton, Yorkshire. Mr. Leckenby’s Collection, and the Woodwardian Museum, Cambridge. 6, 7. From Elsworth Rock (Oxford Clay series), a bed higher in position than the Kelloway Rock. 6. In Mr. Walker’s Collection. (P. 126.)

8, 9. ,, *Oxoniensis*, Walker, MS. Oxford Clay, St. Ives, Huntingdonshire. (P. 126.)

10, 11. ,, *ventricosa* (? Zieten. 10. From the Inferior Oolite, Cleeve Hill, Gloucestershire, Mr. Walker’s Collection. 11. Inferior Oolite (Pea-grit), Crickley Hill, Gloucestershire. (P. 127.)
SUPPLEMENT, PLATE XVI.

Fig.
1—2. *Terebratula trilineata*, Young and Bird. 1. Inferior Oolite, Peak, Yorkshire coast. Collection of Mr. Walker. 2. Internal cast. Inferior Oolite, near Whitby. (P. 128.)

9, 10. *T. subovoides*, Römer, after original figure. 'Ool. Geb.,' Pl. ii, fig. 9. (P. 130.)

11. *T. subovoides*, Oppel, after figure in 'Der Mittlere Lias Schwabens' (Pl. iv, fig. 1). (P. 130.)

12. *T. subovoides*, Oppel, after figure in 'Der Mittlere Lias Schwabens' (Pl. iv, fig. 1). (P. 130.)

13. ? According to E. Deslongchamps (*T. ornithocephala*, Sow., Tab. 101, fig. 2). (P. 132.)

1. Possibly this is the variety of *T. punctata* described as *T. subcellifera* by Dr. U. Schloembach in his 'Eisenstein des mittl. Lias,' p. 548 ('Zeitschr. d. d. geol. Ges. in 1863,' Bd. xv, Hft. 3). If this is the case his name should of course be adopted, but as I have not seen either figures or specimens, I am not quite certain if is identical.
THE

PALLÆONTOGRAPHICAL SOCIETY.

INSTITUTED MDCCCXLVII.

VOLUME FOR 1876.

LONDON:

MDCCCLXXVI.
MONOGRAPH

ON

THE FOSSIL REPTILIA

OF THE

WEALDEN AND PURBECK FORMATIONS.

SUPPLEMENT No. VII.

Pages 1—7; Plates I—VI.

CROCODILIA (Poikilopleuron)

AND

DINOSAURIA? (Chondrostesaurus).

[WEALDEN.]

BY

PROFESSOR OWEN, C.B. F.R.S.,

FOREIGN ASSOCIATE OF THE INSTITUTE OF FRANCE,

ETC. ETC.

Issued in the Volume for the year 1876.

LONDON:

PRINTED FOR THE PALÆONTOGRAPHICAL SOCIETY.

1876.
This genus was established on fossils discovered in the Oolitic building-stone at Caen, Normandy, and the characters which have led to the recognition of evidences of the genus in our own Wealden deposits are the shape and texture of the vertebra, and more especially the latter. By these were determined a caudal vertebra from the Wealden of Tilgate, in the Mantellian collection, now in the British Museum; which vertebra differed from the type-specimens on which the genus was founded, only by a slight inferiority of size.

M. Deslongchamps assigns the length of a ‘décimètre,’ or thereabouts, to his vertebrae, say 3 inches, 10 lines. The Wealden specimen, which has been fractured across the middle of the centrum, gives a length of that element of 3 inches, 8 lines; or about 9 centimeters. The vertical diameter of the articular end is 2 inches, 3 lines (58 mm.), the transverse diameter is 2 inches, 2 lines (55 mm.); the transverse diameter of the middle, contracted part of the centrum is 1 inch, 4 lines (36 mm.).

1 This term refers to the large vacuity in the centre of each vertebral body, simulating a medullary cavity; ossification is here arrested at the middle, not, as in the Amphicela, at the two ends of the centrum.

The external free surface of the vertebra is marked with faint strie, otherwise it is almost smooth. Both terminal surfaces are of a full elliptical form, with the long diameter vertical; they deviate from flatness by a slight concavity. The centrum gradually contracts from the two extremities toward the middle: a diapophysis extends from the upper and hinder part of the side, below which there is a shallow groove, slightly bent with the convexity downward. The neural arch has coalesced with the centrum, and the base of the diapophysis extends from the hinder upper half of the centrum upon the base of the arch. A longitudinal sulcus traverses the anterior half of the under surface of the centrum. The hypapophysial surface is a single obliquely bevelled plane indicative of the confluent bases of the haemapophyses, and this is the character of the haemal arch preserved in the Caen specimen.

In my 'Report on British Fossil Reptiles' I did not recognise grounds for specifically differentiating the Wealden Poikilopleuron from the Poik. Bucklandi of the Caen Oolite. Besides the Tilgate locality I was able to note, after examination of a series of fossils belonging to S. H. Christie, Esq., from the submerged Wealden Beds, Isle of Wight, the "half of a dorsal vertebra from Brook Bay, which agrees in size, in the form of the articular extremity, in the degree of median constriction, and especially in the large size of the medullary" (chondrosal) "cavity at the middle of the bone, with the vertebral characters of Poikilopleuron."

Species. Poikilopleuron pusillus, Ov. Plate I.

This species is, to me at present, represented by eight vertebrae, an ungual phalanx of the rapacious type, and part of a medial symmetrical bone to which are articulated portions of a pair of rib-like bones, as to the nature of which the nearest guess I can make is that they represent part of the series of abdominal ribs with their sternum.

All these bones show a compact osseous texture with a smooth or polished exterior, and a section of one of the dorsal centra exposed, what a fractured caudal one indicated, viz. a large central chondrosal vacuity, such as characterises the centrum of the Oolitic crocodilian genus Poikilopleuron of Eudes-Deslongchamps.

The reptile, of which the present are fossilised remains, was discovered by the Rev. W. Fox, M.A., in the south-west Wealden of the Isle of Wight; it is much smaller than the type of the genus Poikilopleuron from the Caen Oolite, or the Wealden vertebrae above referred to Poik. Bucklandi. It may be objected that the present specimens are from a young individual of the same species; but they show no signs of immaturity, and the caudal haemal hypapophyses indicate the bases of the piers of the haemal arch not to have been confluent as in the Poikilopleuron Bucklandi, and as in Iguanodon.

The vertebral centra are long in proportion to their breadth and depth, and

1 'Reports of the British Association,' 1811, p. 84.
2 Ib., p. 87.
the non-articular surface is so concave lengthwise as to give the appearance of the centrum being constricted between the terminal articular surfaces. These are almost flat.

In one trunk-vertebra, the sides of the centrum converge to a carinate inferior surface. In another (Plate 1, figs. 1—3) that surface is less narrow (ib., fig. 2). In both the suture of the neural arch is traceable, but the arch has remained attached: it shows a small facet (fig. 1, p) for the head of the rib at the fore part of the base of the neural apophysis. A horizontal (diapophysial) ridge (ib. d) extends from the prezygapophysis to the upper surface of the postzygapophysis, broadening as it recedes. The neural spine is compressed, but rises from nearly the entire length of the neural arch. The outer surface of the centrum is compact, smooth, and glistening; and on making a vertical longitudinal section the more definite generic character of the large chondrosal vacuity was exposed, as in fig. 3, eh, 3.

In the series of five vertebrae, including the three hinder lumbers and the sacrum (ib., fig. 4), the costal surface has been transferred to the diapophysial ridge, d, which now extends outward from a contracted base midway between the zygapophyses, the terminal articular surface being supported by a lower buttress-like ridge, f. The under surface of the centrum is here broader than in the preceding vertebra, and is transversely rounded: the carinate character in the dorsal vertebrae, giving space to the abdominal cavity, has here disappeared. In some of the present series the deeply concave side of the centrum has yielded to pressure, and the compact outer wall has been fractured and pressed in upon the chondrosal or quasi medullary cavity. In the last lumbar vertebra the diapophysis, depressed and subelongate, shows a narrow costal surface, d', for a small or short 'false rib.'

The two hindmost vertebrae in this series of five are sacral (s 1, s 2). They have the crocodilian character of limited number, and the non-dinosaurian character of retaining their neural arch in normal junction with the centrum. The doubt expressed as to the ordinal affinities of Poikilopleuron, ¹ in my 'Report,' is here dispelled. The diapophysis, short, but broad and deep (s 1, d), terminates in a large flattened semi-oval surface for the sacral rib. The corresponding surface upon an equally large diapophysis in the second sacral has rather less vertical extent (s 2, d). The centra appear to have coalesced, but the primitive line of separation of the terminal expanded surfaces is traceable.

The neural spines are broken away in all this series of vertebrae, but their narrow elongate bases indicate the same character as in the detached more anterior vertebra from a smaller individual (figs. 1 and 3, ns).

The two caudal vertebrae (figs. 5—8) are from the terminal part of the tail where both transverse and spinous processes have disappeared. The low neural arch has coalesced

¹ "Subsequent discoveries may prove it to belong, like the Megalosaurus, to the Dinosaurian order; but, as the Poikilopleuron is, at present, known, it seems to have most claim to be received into the coelospondylian family of the Crocodilian order," 'Rep. Brit. Assoc.,' 1841, p. 83.
with the centrum, and this, retaining its length, as in the sacral and lumbar region has diminished by loss of transverse and vertical extent. The under surface is canaliculate (fig. 7), and both the anterior and posterior expanded ends of the boundary ridges of the lower groove have articular surfaces, h, h, for a haemal arch.

In Plate I, fig. 9, the compressed subtriangular portion of an abdominal sternum (?) is marked hs; the pair of abdominal ribs which articulate by expanded thinned-off ends to the sides of hs are marked h, h.

The ungual phalanx (ib., figs. 12, 13) is remarkable for its degree of curvature, its strong lever-process, and the deep lateral grooves.

The value of this little specimen and fruit of Mr. Fox’s persevering researches in the Wealden deposits of his vicinity is its demonstration of the limited crocodilian number of trunk-vertebræ deprived of reciprocal motion upon each other, and with transverse processes thickened and terminally expanded for junction with the pelvis.

I repeat, with some stress, this character because the experienced and accomplished palæontologist of the United States, Joseph Leidy, M.D., while rightly recognising the “half of a vertebral body” from a Cretaceous formation at Middle Park, Colorado, as of a Poikilopleuron, remarks:—“Poikilopleuron was probably a semi-aquatic Dinosaurian, an animal equally capable of living on land or in water, and perhaps spending most of its time on shores or in marshes.”

But the cited capacity is enjoyed by Crocodilia equally with Dinosauria; and Poikilopleuron may well have spent, like its neighbour and contemporary Teleosaurus, least of its time on shores or in marshes, if the latter were accessible to it in its Oolitic or Cretaceous localities.

The fossil described and figured by Leidy adds nothing to the evidence previously extant of the affinities of Poikilopleuron; and if I plead for the retention of the orthography of the estimable discoverer of the genus, I more strongly protest against the addition of a new generic term for which Leidy’s fossil yields not a single character.

The geological conditions under which Deslongchamps discovered his Poikilopleuron led him to remark: “aussi dut-il passer une grande partie de sa vie dans les eaux et probablement dans les eaux marines: puisque ses os sont restés dans un calcaire qui doit évidemment sa formation à des débris marins.”

Amongst the rounded pebbles discovered in a position suggestive of their having been in the stomach of the Poikilopleuron, as such pebbles are commonly found in the stomach of a Crocodile or Alligator, Deslongchamps detected the tooth of a Cestraciont Fish, very significant of the element whence the Poikilopleuron derived its food.

Our actual knowledge of the skeleton of Poikilopleuron is sufficiently complete to

1. Contributions to the Extinct Vertebrate Fauna of the Western Territories, p. 268, 4to, 1873.
2. Ibid., pl. xv, figs. 16—18, “Antrodemus.”
gave the answer to the question, "Whether the cavernous structure of its skeleton was related to pneumatic functions, as in Birds, flying Reptiles, and some others?" The central cavity is completely closed; no pneumatic orifice or canal penetrates thereto: it had no communication with pulmonary or other air-cells. Nor is the alternative limited to marrow. Primitive "chordine," to which ossification had not extended, most probably filled the vacuity in the vertebral body shown at d, fig. 2, plate ii, of the 'Mémoires de la Société Linnéenne de Normandie,' sixième volume, 4to, 1838; as in figures of Plate I, fig. 3, of the present Supplement, and in fig. 16 of Leidy's plate xv, op. cit.

Order. DINOSAURIA (?)

Genus—Chondrostosaurus.

Species. Chondrostosaurus gigas; Owen. Plates II—V.

The flatness of the under surface of the vertebra figured in Plates II—V recalled the character of that of Bothriospondylus suффossus, and, with the predominance of the transverse over the vertical diameter, suggested that it also might have come from the sacral series.

The hemisphericoid convexity, however, of the anterior end, notwithstanding abrasion of the articular surface itself, and the proof of its truly indicating such form given by the more perfect preservation of that surface in the opposite concave articular end (Plate III), too plainly pointed to a much more forward position of this remarkable vertebra in the backbone series of the huge Reptile which it represents.

That the vertebra is from the fore part of the trunk may be inferred from the presence, on each side, of both a paraphysis (Pl. II, p) and a diapophysis (ib., d), indicative of the bifurcation of the proximal end of the rib into a capitular and a tubercular articulating process.

The portion of neural canal preserved (Plates III and IV, n) gives the vertical diameter of the centrum. There is no indication in the concave articular surface of that diameter having been diminished by posthumous pressure. The gentle transverse con-

1 Id., p. 279.
2 "Dans les deux séries, le corps des vertèbres est creusé d'une grande cavité médullaire (fig. 2 d, et v. b); le tissu spongieux n'existe qu'aux deux bouts; il y a de chaque coté, dans la gouttière latérale un tronc pour le passage des vaisseaux nourriciers," p. 78; "ces vertèbres présentent à l'intérieur une grande cavité médullaire analogue à celle des os longs." Mem. cit., p. 83.
FOSSIL REPTILIA OF THE

cavity of so much of the broad under surface as is preserved (Plate II) is evidently natural. The deep depression (Plate V, fig. 1, f) on each side of the centrum between the par- and di-apophyses recalls a vertebral character of the genus Bothriospondylus.

The paraphysis (Plate II, fig. 1, p) projects from the level of the under surface: it commences behind, four inches from that end of the vertebra, as an extension of the lower border of the centrum, curving outward and gaining vertical thickness as the process advances (Plate IV, p), the fore part of the base of the process occupying the lower vertical half of the centrum, and terminating very near to the beginning of the anterior articular ball.

The neurapophysis (Plates III, IV, V, n), which has coalesced with the centrum, begins to rise about two inches in advance of the hinder cup. The part of the broken base there preserved yields a transverse thickness of 3\(\frac{1}{2}\) inches. Anterior to this the upper surface of the centrum has been abraded to the level of the neural canal, but sufficient is preserved to show that the neurapophysis loses thickness at the middle of the vertebra, and appears to regain it as it approaches the anterior ball (Plate V, fig. 1).

The base of the diapophysis (Plate V, fig. 1, d) at the part of the neurapophysis preserved gives a fore-and-aft extent of 3\(\frac{1}{4}\) inches, and a vertical diameter of 2 inches, from which the size of the tubercle of the rib may be inferred.

Restoring the margin of the posterior concavity and the articular surface of the anterior convexity, the length of the centrum of this vertebra would be 1 foot 3 inches.

The whole of the side of the centrum is occupied by a deep oblong depression which, probably, lodged a corresponding saccular process of the lung. On one side this depression was partially divided by a thin oblique plate (Plate V, fig. 1, f, f). I deem it much more probable that the large cancelli obvious at every fractured surface of this vertebra were occupied in the living reptile by unossified cartilage, or chondrine, than by air from the lungs, and consequently have no ground for inferring that the whale-like Saurian, of which the present vertebra equals in length the largest one of any Cetacean recent or fossil, had the power of flight, or belonged to either Pterosauria or Aves.

The neural canal (Plate IV, n) indicates a centre of origin of motory nerves subservient to less energetic, more sluggish movements than in the volant groups; movements probably exercised more commonly in the aqueous than the gaseous atmospheres; and it leads to the inference that, when emerging, the huge frame was sustained by the solid earth on limbs of dinosaurian proportions.

The neural canal at the middle of the vertebra yields 1 inch, 3 lines in diameter, and expands to that of 2 inches at its hinder outlet; it is here, therefore, one fourth the transverse diameter of the vertebral centrum.

In a corresponding vertebra of an Eagle (Plate IV, fig. 2) the posterior outlet of the neural canal, n, is 4 lines in diameter, that of the end of the centrum, there, being 6 lines in diameter: the relative size of the myelon, here indicated, harmonises with the rapid and powerful exercise of muscles of flight deriving their motive energy from an adequate
WEALDEN FORMATIONS.

nervous source. The contrast in the relative size of the myelon and vertebra between the Eagle and the Chondrostosaurus is shown by figs. 1 and 3, n, in Plate IV.

The specimen here described and figured was obtained from the submerged Wealden deposit on the south coast of the Isle of Wight, and was purchased for the British Museum.

Species. *Chondrostosaurus magnus*, Ow. Plate VI.

Syn. *Bothriospondylus magnus*, Ow.

A mutilated centrum from the same formation and locality as that of *Chondrostosaurus gigas* has been kindly transmitted to me for the purpose of the present Monograph, by its discoverer, the Rev. Wm. Fox, M.A.

Sufficient of the concave articular surface is preserved to show its correspondence in size with that of the foregoing vertebra, but its proportions are reversed, the vertical diameter plainly appearing to surpass the transverse one. This vertebra, it is true, has come from a more posterior part of the column. The parapophysis has disappeared, at least from the position from which it projects in the subject of Plate II: if such process was present its origin has risen to near the base of the neural arch. So much of the free surface of the centrum as remains is concave lengthwise; all trace of flattening of the inferior surface has disappeared. The curve of the free surface toward the fore end of the centrum indicates that vertebral element to have been shorter absolutely, and much more so relatively to the hinder cup, than in *Chondrostosaurus gigas*. It is hard to suppose that so extreme a degree of modification of shape and proportion should be present in an anterior and a middle dorsal vertebra of the same spine or in the same species, as is exemplified by the subjects of Plates III and VI; I therefore refer them, provisionally, to distinct species. The present vertebra agrees more closely in proportions with that of which a side view is given in a former Monograph.¹

The extreme modification of structure in both that vertebra and the subjects of the present Monograph lead me to refer them to a distinct genus from *Bothriospondylus*; but it is a nearly allied one.

I had a vertical longitudinal section made of a rolled and worn centrum, of smaller size than the type of *Chondrostosaurus gigas*, but of similar proportions. It is figured three fourths of the natural size in Plate V, fig. 2. The black tint indicates the ossified proportion of the vertebral substance; the lighter tint the chondrosal proportion, filled in the fossil by Wealden marl.

¹ 'British Fossil Reptilia of the Mesozoic Formations,' Part II, Pl. VIII, Pal. Soc. vol. for the year 1875.
PLATE I.

Poikilopleuron pusillus.

Fig.
1. Side view of a dorsal vertebra.
2. Under view of a dorsal vertebra.
3. Vertical longitudinal section of the same.
4. Side view of lumbar and sacral vertebrae.
5. Side view of a caudal vertebra.
6. End view of the same.
7. Under view of the same.
8. Vertical transverse section of the middle of the same.
9. Abdominal haemapophysis and haemal spine.
10. Under surface of abdominal haemal spine.
11. Reduced view, in outline, of neural or upper surface of the series of abdominal haemapophyses and spines of a Crocodilus biporcatus.
12. Side view of ungual phalanx.
13. Upper view of the same.

The fossils are of the natural size, are from the Wealden of the Isle of Wight, and are in the Museum of the Rev. W. Fox, M.A., F.G.S.
PLATE II.

Chondrostosaurus gigas.

Fig.
2. Reduced view of restored under surface of the same vertebra.

From the Wealden of the Isle of Wight. In the British Museum.
Chondrostoma gigas.
PLATE III.

Chondrosteosaurus gigas.

Hinder articular surface of the centrum of an anterior trunk-vertebra: nat. size.

From the Wealden of the Isle of Wight. In the British Museum.
PLATE IV.

Fig.
1. Neural surface of centrum of anterior trunk-vertebra of *Chondrosteosaurus gigas*: two thirds nat. size.
3. Neural surface of the centrum of the same vertebra: nat. size.

The subject of fig. 1 is from the Wealden of the Isle of Wight. In the British Museum.
Figs. 1. Chondrostesaurus gigas; 2, 3 Halictus albicilla.
PLATE V.

Chondrosteosaurus gigas.

Fig.

2. Vertical longitudinal section of centrum of anterior trunk-vertebra: three fourths nat. size.

From the Wealden of the Isle of Wight. In the British Museum.
PLATE VI.

Chondrostosaurus magnus.

Hind surface of a trunk-vertebra: nat. size.

From the Wealden of the Isle of Wight. In the Museum of the Rev. W. Fox, M.A., F.G.S.