This page intentionally left blank.
CONTENTS

BAYLISS, P. S. and D. J. BROTHERS. Behaviour and host relationships of Dolichomutilla sycorax (Smith) (Hymenoptera: Mutillidae, Sphecidae) .. 1

CARVALHO, G. A. The number of sex alleles (CSD) in a bee population and its practical importance (Hymenoptera: Apidae) .. 10

GESS, S. K. Distribution and ethology of Priscomasaris Gess (Hymenoptera: Vespidae: Masarinae: Priscomasarina) in Namibia .. 16

GIBSON, G. A. P. The Australian species of Pachyneuron Walker (Hymenoptera: Chalcidoidea: Pteromalidae) ... 29

JANJIC, J. and L. PACKER. New descriptions of Halictus (Seladonia) from the New World (Hymenoptera: Halictidae) ... 55

KIMSEY, L. The new Western Australian tiphiid genus Dythynnus (Hymenoptera: Tiphidae: Thynninae) ... 76

MASON, P. G., M. A. ERLANDSON, and B. J. YOUNGS. Effects of parasitism by Banchus flavescens (Hymenoptera: Ichneumonidae) and Microplitis mediator (Hymenoptera: Braconidae) on the berthia armyworm, Mamestra configurata (Lepidoptera: Noctuidae) .. 81

MASSA, B., M. C. RIZZO, and V. CALECA. Natural alternative hosts of Eulophidae (Hymenoptera: Chalcidoidea) parasitoids of the citrus leafminer Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in the Mediterranean basin 91

SHAW, M. R. Interactions between adults of some species of Netelia Gray (Hymenoptera: Ichneumonidae: Tryphoninae) and their caterpillar hosts (Lepidoptera) 101
INTernational society of hymenopterists
Organized 1982; Incorporated 1991

OFFICERS FOR 2001
John LaSalle, President
Lynn Kimsey, President-Elect
James B. Woolley, Secretary
John T. Huber, Treasurer
E. Eric Grissell, Editor

Subject Editors
SYMPHYTA AND PARASITICA
Biology: Mark Shaw
Systematics: Donald Quicke

ACULEATA
Biology: Sydney Cameron
Systematics: Wojciech Pulawski

All correspondence concerning Society business should be mailed to the appropriate officer at the following addresses: President, CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia; Secretary, Department of Entomology, Texas A&M University, College Station, Texas 77843; Treasurer, Eastern Cereal & Oilseed Research Centre, Agriculture Canada, K. W. Neatby Building, Ottawa, Ontario, Canada K1A 0C6; Editor, Systematic Entomology Laboratory, USDA, % National Museum of Natural History, Washington, D.C. 20560-0168.

Membership. Members shall be persons who have demonstrated interest in the science of entomology. Annual dues for members are US$40.00 per year (US$35.00 if paid before 1 February), payable to The International Society of Hymenopterists. Requests for membership should be sent to the Treasurer (address above). Information on membership and other details of the Society may be found on the World Wide Web at http://IRIS.biosci.ohio-state.edu/ish.

Journal. The Journal of Hymenoptera Research is published twice a year by the International Society of Hymenopterists, % Department of Entomology, Smithsonian Institution, Washington, D.C. 20560-0168, U.S.A. Members in good standing receive the journal. Nonmember subscriptions are $60.00 (U.S. currency) per year.

The Society does not exchange its publications for those of other societies.

Please see inside back cover of this issue for information regarding preparation of manuscripts.

Statement of Ownership

Title of Publication: Journal of Hymenoptera Research.
Frequency of Issue: Twice a year.
Location of Office of Publication, Business Office of Publisher and Owner: International Society of Hymenopterists, % Department of Entomology, Smithsonian Institution, 10th and Constitution NW, Washington, D.C. 20560-0168, U.S.A.
Managing Editor and Known Bondholders or other Security Holders: none.

This issue was mailed 26 April 2001
Behaviour and Host Relationships of Dolichomutilla sycorax (Smith) (Hymenoptera: Mutilillidae, Sphecidae)

PAUL S. BAYLISS AND DENIS J. BROTHERS

School of Botany & Zoology, University of Natal (Pietermaritzburg), Private Bag X01, Scottsville, 3209 South Africa; (PSB: Current address: Transvaal Museum, P.O. Box 413, Pretoria, 0001 South Africa)

Abstract.—Detailed biological information for species of Mutilillidae is generally lacking. The following aspects of the biology of Dolichomutilla sycorax (Smith), based on laboratory observations of 10 specimens (9? 1?d) reared from a single nest of Sceiliphron spirifex (Linneaus) (Sphecidae), are described in detail and discussed: emergence from host nest, activity patterns, mating and grooming. The recorded host relations for D. sycorax are also discussed.

Successful mating by mutilillid wasps generally requires only a short time (Brothers 1972), and very few observations have been recorded. These are important in providing information on sex associations. Grooming in mutilillids has recently been described for the first time (Bayliss and Brothers 1996), and only in the last few years has it been used in systematic studies of the Hymenoptera (Basibuyuk and Quicke 1999). This paper provides the first descriptions of mating and grooming behaviour in Dolichomutilla sycorax (Smith) and surveys the data on its host relationships, as well as providing some other incidental information on the behaviour of this species.

Dolichomutilla sycorax is broadly distributed throughout eastern Africa, from Kenya to South Africa where it is the most common species of the genus. Its taxonomic status as a valid species distinct from Dolichomutilla guineensis (Fabricius) has recently been clarified by Nonveiller (1996). Specimens are approximately 9–22 mm long, with the head and metasoma black and the mesosoma deep maroon-red. The aterous females have a pair of white spots on the second metasomal tergum and an interrupted broad white band on the third tergum; the macropterous males are almost identical in coloration, unlike for most Mutilillidae, and have conspicuously banded wings (Figs. 1–2). Although Gerstaecker (1857, 1862) first described the male (misidentified as that of D. guineensis), presumably based on the similarity of the sexes, Péringuey (1898) was the first to associate the sexes directly, having reared both simultaneously from the mud nests of Peleopaue (= Sceiliphron) spirifex (Linneaus) (Hymenoptera, Sphecidae).

MATERIALS AND METHODS

Laboratory observations were made during April to December 1996 at the University of Natal, Pietermaritzburg. Live adults of D. sycorax were reared from a mud nest of S. spirifex collected at the Greater St Lucia Wetland Park, Ozabeni Section, Lower Mkuze, KwaZulu-Natal, South Africa (27°39’S, 32°26’E) on 6–9 April 1996 by R.M. Miller and J. Kotze. They emerged over a period of about 10 days (starting on 19 May 1996) and were kept isolated in petri dishes (diameter 90 mm, height 20 mm) after emergence. The bases of the dishes were lined with paper towelling to provide a rough substrate.
Mating was observed by placing two adults of opposite sex in the same petri dish; their behaviour was recorded using a Sony 8mm video camera and low-intensity cool fibre-optic illumination. The specimens were observed for at least 20 minutes, and if no interaction (including stridulation or rubbing of antennae) occurred between them during that time, they were separated for several hours before placing them together again.

A Wild M5 stereo microscope, using white light from a desk lamp, was used for observations of grooming at irregular intervals during the day and at night. Such behaviour was noted whenever seen, and detailed observations were carried out after sprinkling the body with flour. Observations (a total of at least 60) involved nine males and one female of *D. sycorax* that emerged from the mud nest and the full repertoire of cleaning activities was seen 12 times in seven different individuals (6♀, 1♂). The terminology used in describing the grooming behaviour is from Basibuyuk and Quicke (1999).

After sufficient observations had been made, the specimens were released into a glass terrarium (288 × 217 × 225 mm, internal measurements) with the floor covered by fine sand to a depth of 25 mm and with several flattish stones to provide hiding places. Food (a solution of 10% honey dissolved in water) and water were provided in small glass tubes plugged with cotton wool. Most specimens lived for 3–10 months, the male surviving for the shortest period (8 weeks).

RESULTS AND DISCUSSION

Specimens Emerging from Mud Nest of Host

The mud nest comprised 15 more or less parallel cells separated by thick walls and with the outer walls thickened and roughened by the addition of extra mud. Within 16 days after the first recorded emergence, one male (12 mm long) and nine females (12–15 mm long) of *D. sycorax*, one specimen of *Stilbum cyanurum* (Förster) (Chrysididae) and two specimens of *Sceliphron spirifex* (one of each sex) had emerged. In addition, there were two cells containing host cocoons which produced hundreds of specimens of a species of *Melittobia* (Eulophidae). The rate of parasitism was thus 87%.

Activity Patterns of *D. sycorax*

Emergence.—It took approximately 10 minutes for each individual, using the mandibles, to chew its way out of the cell. The antennae, followed by the head, first emerged through the newly chewed exit hole, and the surroundings were scanned. Since the forepart of the body is often slightly narrower than the posterior part, the metasoma was often unable to pass through the hole. The process of chewing would then be resumed until the hole was large enough for the entire body to pass through. After emergence, several minutes
were spent inspecting the nest, although no attempt was made to enter a previously vacated cell (n = 3).

Daily activity.—Because of the artificial conditions of the terrarium, it is impossible to assume much about daily cycles. A female was placed together with the others in the terrarium only after the male had mated or interacted with her. The only male was kept in the terrarium with the mated females and his activity, as with the females, was monitored. At night all females huddled together under the same flat stone, even though there were several others of similar shape. The male was solitary, never resting with the females. The male died after 55 days, while the females lived for approximately 6 months. One female lived for almost 11 months.

Mating

Immediately after a male and a female were placed together in a petri dish, after having been kept in separate vials (n = 5), they initially tried to escape by running. Whenever the two individuals came into contact head-on, both instantly showed avoidance or escape reactions by moving away in different directions. This is similar to Ferguson’s (1962) observations on Sphaerothelia (Photopsis) blakeii (Fox) but contrary to Brothers’ (1972) observations on Pseudomethoca frigida (Smith) and Bayliss and Brothers’ (1996) observations on Tricholabidodes spp. where neither member showed avoidance reactions. As soon as the male contacted the female, except when head-on, his antennae began to vibrate rapidly and continuously over her body. Within seconds he attempted to mount her. The female resisted by stridulating strongly, raising herself on her legs and flexing the apex of her metasoma slightly towards her coxae. As soon as the male began stroking her with his antennae, she became subdued, stopped stridulating and became absolutely still. Once on the female, the male continued to flicker his antennae, continuously stroking her head and the anterior part of her mesosoma (Fig. 3). The female remained in a frozen position, with her antennae concealed under her deflexed head. After a period ranging from several seconds to a couple of minutes, depending on her reaction, the male gradually manoeuvred posteriorly on the female so that his genitalia could be inserted into her genital opening. If she became restless the stroking of her body by his antennae intensified. If she became more restless, he would quickly resume his initial more anterior position.

After moving posteriorly, the male grasped the female laterodorsally at the midlength of the first metasomal segment with his mandibles; extruding his genitalia he began prodding her genital opening with them. Often, while the male was probing her genital opening, the female would wander around the petri dish with him still mounted on her back. If she became too agitated or began moving too quickly, the male withdrew his genitalia, disengaged his mandibles and again began stroking her with his antennae. As soon as actual genital union occurred, the female became motionless, thrusting her body forward, tucking her forelegs under her head, with the middle and hind legs placed laterally and supporting her. Her entire body was more or less straight with the metasoma lifted and the head against the substrate. Her ovipositor was extruded (Fig. 4), a condition which may be necessary for successful copulation in miltilds since it has been observed in other species (Brothers 1972, Bayliss and Brothers 1996). Genital union lasted between 60–100 seconds, during which time the male continuously stroked the female with his legs and antennae. Throughout genital union, the parameres remained outside the body of the female, lateral to her genital opening, while the rest of the male’s genitalia extended into the female.

Immediately following separation of the genitalia, the male, poised posteriorly on
the metasoma of the female, extended and straightened his metasoma, thrusting the tip high into the air, and retracted his genitalia (Fig. 5). Suddenly, without warning, the male rushed forward over the female, coming to rest on her mesosoma. He dropped his head on to hers and lifted the posterior part of his metasoma high into the air, almost perpendicular to the substrate, while swaying back and forth for approximately 5–10 seconds before dismounting (Fig. 6). Immediately upon genital separation the female retracted her ovipositor and bent her metasoma forward between her legs. She bent her head down and nibbled the metasomal tip with her mouthparts. This behaviour has previously been reported as unique for the
Formicidae within the Hymenoptera (Wilson 1962, Farish 1972), but has never been recorded following copulation. Its function is not obvious but, despite the fact that no extruding material could be seen, it is possible that part of the material deposited by the male is a nuptial donation which the female consumes and uses as food or as some chemical signal. The female did not extrude and withdraw her sting as observed by Brothers (1972) in *Pseudomethoca frigida*, and by Bayliss and Brothers (1996) in *Tricholabiodes* spp. After dismounting, the male usually began grooming himself thoroughly. It was several seconds before the female began to wander around the petri dish again.

In subsequent encounters immediately following mating, the male’s response to the female was one of apparent hostility; he rushed at her, fluttering his wings and bumping into her from behind. After several seconds of such treatment, and with no possible escape from the petri dish, the female stopped moving and hunched up, curling her head and antennae under her body and tucking her legs against her sides. The male continued to bump her from behind, rushing at her with wings flapping, apparently attempting to drive her away. Subsequent encounters between the male and female were of shorter duration, with continued aggressive behaviour exhibited by the male towards the female. Similarly, if two previous recently mated adults were again placed together, the male immediately became aggressive towards the female, chasing her with wings fluttering and bumping her, almost pouncing on her. The male became more aggressive to the mated female the longer they were kept together. There was never an attempt by the male to mount an already mated female. As previously observed in *P. frigida* (Brothers 1972), the attractiveness of a mated female mutillid appears to diminish rapidly after mating. After several days the aggressive behaviour of the male towards the female had vanished, with him totally ignoring her.

Unlike the situation in some other Smicromyrmina (Mutillini), some Myrmosinae and the Rhopalomyrmillinae (Brothers 1975, 1989), where the male often transports the female in flight before settling and mating or may even mate in flight, in *D. sycorax* no attempt was made by the male to fly and carry the female, and mating took place on the substrate in an upright position. The absence of phoretic copulation is probably because the male is about the same size as the female or even smaller.

Grooming

There are no differences in cleaning techniques between the sexes (except for those involving the wings). If an individual is extremely dirty it first partially cleans the posterior part of the body; otherwise grooming proceeds antero-posteriorly.

Head.—The antennae, which are the most frequently groomed structures, are cleaned using the antenna cleaners on the front legs, either by double-antenna scraping (both antenna cleaners are simultaneously passed distad along the respective ipsilateral antenna) or single-antenna scraping (one antenna at a time is groomed by the ipsilateral antenna cleaner; the different antennae are usually groomed consecutively). During double-antenna scraping, the head remains still with each antenna placed in its antenna cleaner and then drawn between the spur and basitarsus from base to apex three to four times by movement of the forelegs. During single-antenna cleaning, the leg is lifted over the antenna which is placed in and pulled through the antenna cleaner by tilting the head backwards and simultaneously moving the leg away from the head. Sometimes, more often in the female, there is simultaneous grooming of one antenna using the antenna cleaners of both ipsi- and contralateral forelegs. The
surface of the head is cleaned by both forelegs separately or simultaneously. If the head is cleaned by only one foreleg, it is tilted to one side and brushed posteriorly with short rapid strokes. The brushing of the head is usually followed by single-antenna scraping. The foreleg calcaria are used for cleaning the mandibles, while both maxillary and labial palpi are cleaned similarly to double-antenna scraping, where the palpi are either singly or simultaneously pulled rapidly through the antenna cleaner of the ipsilateral forelegs. While one foreleg is cleaning the ipsilateral antenna, the other might be cleaning the palpi.

Body.—Cleaning of the dorsal and lateral parts of the mesosoma was never observed. The anterior part of the mesosoma, including the neck region, is cleaned with the forelegs separately or simultaneously. The mesosternum is cleaned by the calcar and basitarsus of the foreleg; the calcar is first angled away from the basitarsus, then pushed down the length of the mesosoma between the coxae, ending with the foreleg rubbing laterally against the ipsilateral middle leg. The dorsal and lateral parts of the metasoma are cleaned by both hind legs, using alternating or simultaneous strokes. While grooming the metasoma, the wasp balances on its front two pairs of legs, with the entire body slightly arched and the wings folded dorsally. Often only one side of the metasoma is cleaned, using the ipsilateral leg. The longer tibial spur, which is that mainly used, is angled away from the tibia. The metasoma is first cleaned proximally, then sequentially more distally using longer strokes each time, the first one or two segments being cleaned before proceeding to the more distal segments. The sides are groomed first, followed by the dorsal surface and then the sterna which are cleaned by a single hind leg. While the middle and hind legs clean the metasoma, the animal balances on its head with the forelegs supporting it laterally but close to the head.

Although the hind legs are predominantly responsible for cleaning the metasoma, the middle legs might assist by making several strokes down the sides. No concentration of attention to grooming of the felt lines (laterally on the second metasomal tergum) or the metasomal apex was observed, although these areas may be sources of pheromones or other chemicals.

Legs.—The legs are cleaned sequentially, anterior to posterior. The fore legs, if very dirty are first rubbed against each other. The entire foreleg is then rubbed against and pulled between the spur and basitarsus of the ipsilateral middle leg. The ipsilateral middle leg is not moved. Alternatively, the fore leg is positioned ventrally along the length of the body, and the spur and basitarsus of the ipsilateral middle leg is scraped down its entire length and then shaken. Cleaning of the forelegs, in particular the tarsi and apical portions of the tibiae, using the mouthparts (otherwise known as foreleg nipping) was never observed, although Basibuyuk and Quicke (1999) noted this as commonly occurring in Mutillidae. The middle legs are groomed separately, using the tibial spurs and basitarsi of both hind legs. The hind legs are groomed separately, using the tibial spurs and basitarsi of the ipsilateral middle and contralateral hind legs. The hind leg remains still. A hind leg is first cleaned distally, then sequentially more proximally by cleaning a longer section each time that the other legs are rubbed against it. The hind leg used for cleaning, if very dirty, is shaken or the basitarsi of both hind legs are rubbed together.

Wings.—The left and right wings, like the antennae, are cleaned either separately or simultaneously, using the spur and basitarsus of the ipsilateral hind leg. This is not to be confused with ichneumonid-type wing grooming where both pairs of raised wings are groomed simultaneously between the tibia and tarsus of each respective ipsilateral hind leg (Behaviour 16
Host Relations

Specimens of *Dolichomutilla* have been reared from the mud nests of various host wasps (specially sphexids of the tribe Sceliphrinae) and appear to be restricted to such hosts. Nonveiller (1996) gave the host of *D. guineensis* (Fabricius) (= *D. simillima* Bischoff) as an unidentified species of Chalybion, and that of *D. scutellifera* (André) (= *D. conigera* (André)) as an unidentified species of Sceliphron. Krombein & Walkley (1962) recorded *D. minor* minor Bischoff as a parasite of *Sceliphron spirifex*; we have seen a female specimen of *D. m. minor* collected on a *Sceliphron* nest at Mkuzi Game Reserve, KwaZulu-Natal (27°37'S, 32°14'E) on 3–6.iii.1990 by A. Weaving (DJB collection) and a female of *D. m. minor* reared from a mud nest of "*Cyphononyx antennatus* (Smith)" (Pompilidae) collected at Durban on 10.i.1945 by Marley (South African Museum collection). Weaving (1994a, 1994b, 1995) recorded the hosts of *D. heterodonta* Bischoff in KwaZulu-Natal as *Auplopus femoralis* (Arnold) (Pompilidae), *Tricarinothyreus guerinii* (Saussure) and *Afrovenues aesthipicus* (Saussure) (both Vespidae, Eumeninae), all species using mud in nest making. (The mutilid was probably misidentified, however, since that species only occurs further north.)

Péringuey (1898) reared both sexes of *D. sycorax* from the mud nests of *S. spirifex* on several occasions. Skaife (1953:325) referred to "*D. guineensis*" (actually *D. sycorax*) as having been reared from *S. spirifex*, but gave no authority for this, and may have been referring to Péringuey's specimens. (Incidentally, Skaife's figure 163, captioned as being of both sexes of *D. guineensis* "Parasitic on solitary bees" (sic), shows a male which looks like a species of *Stenomutilla* and a female which is probably a species of *Dasylabronides.*) Weaving (1994b, 1995) recorded *S. spirifex*, *T. guerinii* and *Synagris analis* Saussure (Vespidae, Eumeninae) as hosts of *D. sycorax*,
and provided considerable information on the biologies of the hosts and the influence of nest type and construction on parasitism rates. In the Albany Museum (Grahamstown) there are three female and three male specimens of *D. sycorax* reared from a nest of *S. spirifex* which also yielded one female and one male of the host and was collected by N.J. Myers at the Tobacco Research Station, Trelawney, Zimbabwe, January/February 1954 (dets F.W. Gess). In addition to these records and the same host relationship recorded in this paper, *D. sycorax* has also been reared from multicellular mud nests of a species of eumenine vespid, possibly *Delta maxillosa* (de Geer) (det. C.F. Jacot-Guillarmod) or *S. analis* (see Weaving 1995), collected by DJB at Lake Sibaya, KwaZulu-Natal on 13–25 March 1968. That nest yielded no host specimens, but produced six mutilids, five females (10–18 mm long) and one male (10 mm long). The considerable difference in sizes of individuals in this clutch is notable. The largest female has golden brown pubescence replacing the black pubescence of the other specimens and thus appears very different in coloration. (Bischoff (1920) described a similar female specimen of this species as form *aurata*, and this phenomenon was first noted by André (1899:35) for other mutilids.) The host range of *D. sycorax* is thus greater than previously thought, although in all cases mud is used for nest construction, whether as free multicellular aerial nests or forming the nest closures and cell partitions in cavity nests.

Also interesting is the fact that for two of the three nests from which multiple mutilids emerged, a single male was produced. This may indicate a tendency toward a biased sex ratio as is found in some other parasitoid hymenopterons, specially those which develop gregariously or quasi-gregariously, and which produce a single male that emerges early and mates with his sisters as they emerge (e.g. see Hardy 1994). Additional evidence is obviously needed, but partial support may be derived from the observation that males of *Dolichomutilla* are very much rarer in collections than are females.

ACKNOWLEDGEMENTS

We wish to thank Ray Miller and Johan Kotze of the University of Natal (Pietermaritzburg) and the KwaZulu-Natal Nature Conservation Service for the specimens. Fred Gess of the Albany Museum kindly supplied information on specimens in his care. Financial assistance was provided by the Foundation for Research Development and the University of Natal Research Committee.

LITERATURE CITED

Gerstaecker, A. 1857. [Descriptions.] In: Peters, Übersicht der von ihm in Mossambique aufgefundenen und von ihm. Dr. Gerstäcker bearbeiteten Hymenopteren aus den Familien der Crabronites, Sphegidae, Pompilidae und Heterogy-

CONTENTS

BAYLISS, P. S. and D. J. BROTHERS. Behaviour and host relationships of Dolichomutilla sycorax (Smith) (Hymenoptera: Mutillidae, Sphecidae) 1

CARVALHO, G. A. The number of sex alleles (CSD) in a bee population and its practical importance (Hymenoptera: Apidae) 10

GESS, S. K. Distribution and ethology of Priscomasaris Gess (Hymenoptera: Vespidae):
Masarinae: Priscomasarina) in Namibia 16

GIBSON, G. A. P. The Australian species of Pachyneuron Walker (Hymenoptera: Chalcidoidea: Pteromalidae) 29

JANJIC, J. and L. PACKER. New descriptions of Halictus (Seladonia) from the New World (Hymenoptera: Halictidae) 55

KIMSEY, L. The new Western Australian tiphiid genus Dythynnus (Hymenoptera: Tiphidae: Thynninae) 76

MASON, P. G., M. A. ERLANDSON, and B. J. YOUNGS. Effects of parasitism by Banchus flavescens (Hymenoptera: Ichneumonidae) and Microplitis mediator (Hymenoptera: Braconidae) on the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae) 81

MASSA, B., M. C. RIZZO, and V. CALECA. Natural alternative hosts of Eulophidae (Hymenoptera: Chalcidoidea) parasitoids of the citrus leafminer Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in the Mediterranean basin 91

SHAW, M. R. Interactions between adults of some species of Netelia Gray (Hymenoptera: Ichneumonidae: Tryphoninae) and their caterpillar hosts (Lepidoptera) 101
INTERNATIONAL SOCIETY OF HYMENOPTERISTS

Organized 1982; Incorporated 1991

OFFICERS FOR 2001

John LaSalle, President

Lynn Kimsey, President-Elect

James B. Woolley Secretary

John T. Huber, Treasurer

E. Eric Grissell, Editor

Subject Editors

- Symphyta and Parasitica Aculeata

- Biology: Mark Shaw Biology: Sydney Cameron

- Systematics: Donald Quicke Systematics: Wojciech Pulawski

All correspondence concerning Society business should be mailed to the appropriate officer at the following addresses: President, CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia; Secretary, Department of Entomology, Texas A&M University, College Station, Texas
Membership. Members shall be persons who have demonstrated interest in the science of entomology. Annual dues for members are US$40.00 per year (US$35.00 if paid before 1 February), payable to The International Society of Hymenopterists. Requests for membership should be sent to the Treasurer (address above). Information on membership and other details of the Society may be found on the World Wide Web at http://IRIS.biosci.ohio-state.edu/ish.

Journal. The Journal of Hymenoptera Research is published twice a year by the International Society of Hymenopterists, % Department of Entomology, Smithsonian Institution, Washington, D.C. 20560-0168, U.S.A. Members in good standing receive the Journal. Nonmember subscriptions are $60.00 (U.S. currency) per year.

The Society does not exchange its publications for those of other societies.

Please see inside back cover of this issue for information regarding preparation of manuscripts.

Statement of Ownership

Title of Publication: Journal of Hymenoptera Research.

Frequency of Issue: Twice a year.

Location of Office of Publication, Business Office of Publisher and Owner: International Society of Hymenopterists, % Department of Entomology, Smithsonian Institution, 10th and
Behaviour and Host Relationships of Dolichomutilla sycorax (Smith)

(Hymenoptera: Mutillidae, Sphecidae)

Paul S. Bayliss and Denis J. Brothers

School of Botany & Zoology, University of Natal (Pietermaritzburg), Private Bag X01,
Scottsville, 3209 South Africa; (PSB: Current address: Transvaal Museum, P.O. Box 413,
Pretoria, 0001 South Africa)
Abstract. — Detailed biological information for species of Mutillidae is generally lacking. The following aspects of the biology of Dolichomutilla sycorax (Smith), based on laboratory observations of 10 specimens (99, 16") reared from a single nest of Sceliphron spirifex (Linnaeus) (Sphecidae), are described in detail and discussed: emergence from host nest, activity patterns, mating and grooming. The recorded host relations for D. sycorax are also discussed.

Successful mating by mutillid wasps on the third tergum; the macropterous generally requires only a short time males are almost identical in coloration, (Brothers 1972), and very few observations unlike for most Mutillidae, and have con- have been recorded. These are important spicuously banded wings (Figs. 1-2). Al- in providing information on sex associa- though Gerstaecker (1857, 1862) first de- tions. Grooming in mutillids has recently scribed the male (misidentified as that of been described for the first time (Bayliss D. guineensis), presumably based on the and Brothers 1996), and only in the last similarity of the sexes, Peringuey (1898) few years has it been used in systematic was the first to associate the sexes directly, studies of the Hymenoptera (Basibuyuk having reared both simultaneously from and Quicke 1999). This paper provides the the mud nests of Pelopaeus [= Sceliphron] first descriptions of mating and grooming spirifex (Linnaeus) (Hymenoptera, Spheci- behaviour in Dolichomutilla sycorax (Smith) dae).

and surveys the data on its host relation- ships, as well as providing some other in- MATERIALS AND METHODS cidental information on the behaviour of Laboratory observations were made this species. during April to December 1996 at the Uni-

Dolichomutilla sycorax is broadly distrib- uted throughout eastern Africa, from Ken- adults of D. sycorax were reared from a
ya to South Africa where it is the most mu d nest of S. spirifex collected at the
common species of the genus. Its taxo- Greater St Lucia Wetland Park, Ozabeni
nomic status as a valid species distinct Section, Lower Mkuze, KwaZulu-Natal,
from Dolichomutilla guineensis (Fabricius) South Africa (27°39'S, 32°26'E) on 6-9
has recently been clarified by Nonveiller April 1996 by R.M. Miller and J. Kotze.
(1996). Specimens are approximately 9-22 They emerged over a period of about 10
mm long, with the head and metasoma days (starting on 19 May 1996) and were
black and the mesosoma deep maroon- kept isolated in petri dishes (diameter 90
red. The apterous females have a pair of mm, height 20 mm) after emergence. The
white spots on the second metasomal ter- bases of the dishes were lined with paper
gum and an interrupted broad white band towelling to provide a rough substrate.
Mating was observed by placing two adults of opposite sex in the same petri dish; their behaviour was recorded using a Sony 8mm video camera and low-intensity cool fibre-optic illumination. The specimens were observed for at least 20 minutes, and if no interaction (including stridulation or rubbing of antennae) occurred between them during that time, they were separated for several hours before placing them together again.

A Wild M5 stereo microscope, using white light from a desk lamp, was used for observations of grooming at irregular intervals during the day and at night. Such behaviour was noted whenever seen, and detailed observations were carried out after sprinkling the body with flour. Observations (a total of at least 60) involved nine males and one female of D. sycorax that emerged from the mud nest and the full repertoire of cleaning activities was seen 12 times in seven different
individuals (6$, 16). The terminology used in describing the grooming behaviour is from Basibuyuk and Quicke (1999). After sufficient observations had been made, the specimens were released into a glass terrarium (288 X 217 X 225 mm, internal measurements) with the floor covered by fine sand to a depth of 25 mm and with several flattish stones to provide hiding places. Food (a solution of 10% honey dissolved in water) and water were provided in small glass tubes plugged with cotton wool. Most specimens lived for 3-10 months, the male surviving for the shortest period (8 weeks).

RESULTS AND DISCUSSION

Specimens Emerging from Mud Nest of Host

The mud nest comprised 15 more or less parallel cells separated by thick walls and with the outer walls thickened and roughened by the addition of extra mud. Within 16 days after the first recorded emergence,
one male (12 mm long) and nine females (12-15 mm long) of D. sycorax, one specimen of Stilbum cyanurum (Forster) (Chrysididae) and two specimens of Sceliphron spirifex (one of each sex) had emerged. In addition, there were two cells containing host cocoons which produced hundreds of specimens of a species of Melittobia (Eulophidae). The rate of parasitism was thus 87%.

Activity Patterns of D. sycorax

Emergence. — It took approximately 10 minutes for each individual, using the mandibles, to chew its way out of the cell. The antennae, followed by the head, first emerged through the newly chewed exit hole, and the surroundings were scanned. Since the forepart of the body is often slightly narrower than the posterior part, the metasoma was often unable to pass through the hole. The process of chewing would then be resumed until the hole was large enough for the entire body to pass through. After emergence, several minutes
were spent inspecting the nest, although head and the anterior part of her meso-

no attempt was made to enter a previous-soma (Fig. 3). The female remained in a

ly vacated cell (n = 3). frozen position, with her antennae con-

Daily activity. — Because of the artificial sealed under her deflexed head. After a
conditions of the terrarium, it is impossible to assume much about daily cycles. A couple of minutes, depending on her re-
female was placed together with the others in the terrarium only after the male posteriorly on the female so that his gen-
had mated or interacted with her. The italia could be inserted into her genital
only male was kept in the terrarium with opening. If she became restless the strok-
the mated females and his activity, as with ing of her body by his antennae intensi-
the females, was monitored. At night all fled. If she became more restless, he
females huddled together under the same would quickly resume his initial more an-
flat stone, even though there were several terior position.

others of similar shape. The male was sol- After moving posteriorly, the male

itary, never resting with the females. The grasped the female laterodorsally at the

male died after 55 days, while the females midlength of the first metasomal segment
lived for approximately 6 months. One fe-

male lived for almost 11 months. lia he began prodding her genital opening

with them. Often, while the male was

atin 8 prodding her genital opening, the female

Immediately after a male and a female would wander around the petri dish with were placed together in a petri dish, after him still mounted on her back. If she be-
having been kept in separate vials (n = 5), came too agitated or began moving too they initially tried to escape by running, quickly, the male withdrew his genitalia,
Whenever the two individuals came into disengaged his mandibles and again be-
contact head-on, both instantly showed gan stroking her with his antennae. As avoidance or escape reactions by moving soon as actual genital union occurred, the away in different directions. This is simi-
female became motionless, thrusting her lar to Ferguson's (1962) observations on body forward, tucking her forelegs under Sphaerophalma (Photopsis) blakeii (Fox) but her head, with the middle and hind legs contrary to Brothers' (1972) observations placed laterally and supporting her. Her on Pseudomethoca frigida (Smith) and Bay- entire body was more or less straight with liss and Brothers' (1996) observations on the metasoma lifted and the head against Tricholabiodes spp. where neither member the substrate. Her ovipositor was extrud-
showed avoidance reactions. As soon as ed (Fig. 4), a condition which may be nec-
the male contacted the female, except essary for successful copulation in mutil-
when head-on, his antennae began to vi- lids since it has been observed in other brate rapidly and continuously over her species (Brothers 1972, Bayliss and Broth-
body. Within seconds he attempted to ers 1996). Genital union lasted between mount her. The female resisted by stridu- 60-100 seconds, during which time the lating strongly, raising herself on her legs male continuously stroked the female
and flexing the apex of her metasoma with his legs and antennae. Throughout slightly towards her coxae. As soon as the genital union, the parameres remained male began stroking her with his anten- outside the body of the female, lateral to nae, she became subdued, stopped strid- her genital opening, while the rest of the ulating and became absolutely still. Once male's genitalia extended into the female, on the female, the male continued to flick- Immediately following separation of the er his antennae, continuously stroking her genitalia, the male, poised posteriorly on

[Begin Page: Page 4]

Journal of Hymenoptera Research

Figs. 3-6. Dolichomutilla sycorax, mating behaviour, diagrammatic. 3, mounted 8 stroking 9 with antennae. 4, posture immediately before copulation. 5, posture immediately after copulation. 6, posture several seconds after copulation.

the metasoma of the female, extended and straightened his metasoma, thrusting the tip high into the air, and retracted his gen- italia (Fig. 5). Suddenly, without warning, the male rushed forward over the female, coming to rest on her mesosoma. He dropped his head on to hers and lifted the posterior part of his metasoma high into the air, almost perpendicular to the sub- strate, while swaying back and forth for
approximately 5-10 seconds before dismounting (Fig. 6). Immediately upon genital separation the female retracted her ovipositor and bent her metasoma forward between her legs. She bent her head down and nibbled the metasomal tip with her mouthparts. This behaviour has previously been reported as unique for the Formicidae within the Hymenoptera (Wilson 1962, Farish 1972), but has never been recorded following copulation. Its function is not obvious but, despite the fact that no extruding material could be seen, it is possible that part of the material deposited by the male is a nuptial donation which the female consumes and uses as food or as some chemical signal. The female did not extrude and withdraw her sting as observed by Brothers (1972) in Pseudomethoca frigida, and by Bayliss and Brothers (1996) in Tricholabides spp. After dismounting, the male usually began
grooming himself thoroughly. It was several seconds before the female began to wander around the petri dish again.

In subsequent encounters immediately following mating, the male's response to the female was one of apparent hostility; he rushed at her, fluttering his wings and bumping into her from behind. After several seconds of such treatment, and with no possible escape from the petri dish, the female stopped moving and hunched up, curling her head and antennae under her body and tucking her legs against her sides. The male continued to bump her from behind, rushing at her with wings flapping, apparently attempting to drive her away. Subsequent encounters between the male and female were of shorter duration, with continued aggressive behaviour exhibited by the male towards the female. Similarly, if two previous recently mated adults were again placed together, the male immediately became aggressive towards the female, chasing her with wings fluttering and bumping her, almost pouncing on her. The male became more aggressive to the mated female the longer
they were kept together. There was never an attempt by the male to mount an already mated female. As previously observed in P. frigida (Brothers 1972), the attractiveness of a mated female mutillid appears to diminish rapidly after mating. After several days the aggressive behaviour of the male towards the female had vanished, with him totally ignoring her.

Unlike the situation in some other Smicromyrmina (Mutillini), some Myrmosiinae and the Rhopalomutillinae (Brothers 1975, 1989), where the male often transports the female in flight before settling and mating or may even mate in flight, in D. sycorax no attempt was made by the male to fly and carry the female, and mating took place on the substrate in an upright position. The absence of phoretic copulation is probably because the male is about the same size as the female or even smaller.

Grooming

There are no differences in cleaning techniques between the sexes (except for
those involving the wings). If an individual is extremely dirty it first partially cleans the posterior part of the body; otherwise grooming proceeds antero-posteriorly.

Head. — The antennae, which are the most frequently groomed structures, are cleaned using the antenna cleaners on the front legs, either by double-antenna scraping (both antenna cleaners are simultaneously passed distad along the respective ipsilateral antenna) or single-antenna scraping (one antenna at a time is groomed by the ipsilateral antenna cleaner; the different antennae are usually groomed consecutively). During double-antenna scraping, the head remains still with each antenna placed in its antenna cleaner and then drawn between the spur and basitarsus from base to apex three to four times by movement of the forelegs. During single-antenna cleaning, the leg is lifted over the antenna which is placed in and pulled through the antenna cleaner by tilting the head backwards and simultaneously moving the leg away from the head. Sometimes, more often in the fe-
male, there is simultaneous grooming of
one antenna using the antenna cleaners of
both ipsi- and contralateral forelegs. The

[Begin Page: Page 6]

6 Journal of Hymenoptera Research

surface of the head is cleaned by both Although the hind legs are predominantly
forelegs separately or simultaneously. If responsible for cleaning the metasoma, the
the head is cleaned by only one foreleg, it middle legs might assist by making sev-
is tilted to one side and brushed postero-
eral strokes down the sides. No concentra-
forantiorly with short rapid strokes. The tion of attention to grooming of the felt
brushing of the head is usually followed lines (laterally on the second metasomal
by single-antenna scraping. The foreleg tergum) or the metasomal apex was ob-
scraping, where the palpi are either singly l, anterior to posterior. The fore legs, if
or simultaneously pulled rapidly through very dirty are first rubbed against each
the antenna cleaner of the ipsilateral fore-
other. The entire foreleg is then rubbed
legs. While one foreleg is cleaning the ip-
against and pulled between the spur and
lateral antenna, the other might be clean-
basitarsus of the ipsilateral middle leg.
ing the palpi. The ipsilateral middle leg is not moved.
Body.— Cleaning of the dorsal and lat-
ual parts of the mesosoma was never ob-
ventrally along the length of the body, and
erved. The anterior part of the mesoso-
the spur and basitarsus of the ipsilateral
ma, including the neck region, is cleaned middle leg is scraped down its entire with the forelegs separately or simulta- length and then shaken. Cleaning of the neously. The mesosternum is cleaned by forelegs, in particular the tarsi and apical the calcar and basitarsus of the foreleg; the portions of the tibiae, using the mouth-calcar is first angled away from the basi- parts (otherwise known as foreleg nib- tarsus, then pushed down the length of bling) was never observed, although Bas- the mesosoma between the coxae, ending ibuyuk and Quicke (1999) noted this as with the foreleg rubbing laterally against commonly occurring in Mutillidae. The the ipsilateral middle leg. The dorsal and middle legs are groomed separately, using lateral parts of the metasoma are cleaned the tibial spurs and basitarsi of both hind by both hind legs, using alternating or si- legs. The hind legs are individually multaneous strokes. While grooming the cleaned by the spurs and basitarsi of the metasoma, the wasp balances on its front ipsilateral middle and contralateral hind two pairs of legs, with the entire body legs. The hind leg remains still. A hind leg slightly arched and the wings folded dor- is first cleaned distally, then sequentially sally. Often only one side of the metasoma more proximally by cleaning a longer sec- is cleaned, using the ipsilateral leg. The tion each time that the other legs are longer tibial spur, which is that mainly rubbed against it. The hind leg used for used, is angled away from the tibia. The cleaning, if very dirty, is shaken or the metasoma is first cleaned proximally, then basitarsi of both hind legs are rubbed to- sequentially more distally using longer gather.

strokes each time, the first one or two seg- Wings. — The left and right wings, like ments being cleaned before proceeding to the antennae, are cleaned either separately the more distal segments. The sides are or simultaneously, using the spur and bas- groomed first, followed by the dorsal sur- itarsus of the ipsilateral hind leg. This is
face and then the sterna which are cleaned not to be confused with ichneumonid-type

by a single hind leg. While the middle and wing grooming where both pairs of raised

hind legs clean the metasoma, the animal wings are groomed simultaneously be-

balances on its head with the forelegs sup- tween the tibia and tarsus of each respec-

porting it laterally but close to the head, tive ipsilateral hind leg (Behaviour 16

[Begin Page: Page 7]

Volume 10, Number 1, 2001

(Basibuyuk and Quicke 1999)). Unlike ich-

neumonid-type wing grooming, where the

wings are cleaned while in a horizontal

position (Basibuyuk and Quicke 1999), in

D. sycorax the wings are orientated ventro-
laterally to the metasoma. While the fore-
wings are cleaned, the hind wings are po-

positioned laterally, perpendicular to the

body and horizontal to the substrate. The

wing, while being cleaned, always re-

mains between the body and the hind leg.

While the dorsal surface of the forewing
is being cleaned, the costal margin is orientated ventrally with the dorsal surface facing outwards. The metatibia and metabasitarsus, remaining lateral to the wing, slowly comb it in a backward-downward motion. After 3^1 strokes the hind leg is cleaned. The posterior margin of the forewing is cleaned once the dorsal surface has been combed; it is gripped and pulled between the spur and basitarsus. Thereafter the forewing is orientated so that the costal margin is dorsally placed, with the ventral surface facing outward. The ventral surface of the forewing is cleaned similarly to the dorsal surface. The hind wing is cleaned in a sequence similar to the forewing. The latter returns to a horizontal position along the body after scraping, though at a greater distance from the body than in the normal resting position. The hind wings are similarly flipped as the forewings, depending on the surface being cleaned. When the wings of both sides are being cleaned simultaneously, the animal balances on its front and middle legs, and when cleaning the wings separately, the wasp shifts its weight to either the left or right legs, arching the mesosoma away
and the metasoma towards the wing that is being cleaned.

Compared with Tricholabiodes spp. (Bayliss and Brothers 1996), D. sycorax displays relatively few differences in grooming techniques but does tend to exhibit a greater repertoire of grooming behaviours.

Host Relations

Specimens of Dolichomutilla have been reared from the mud nests of various host wasps (specially sphecid wasps of the tribe Sceliphrini) and appear to be restricted to such hosts. Nonveiller (1996) gave the host of D. guineensis (Fabricius) (= D. simillima Bischoff) as an unidentified species of Chalybion, and that of D. scutellifera (Andre) (= D. conigera (Andre)) as an unidentified species of Sceliphrion. Krombein & Walkley (1962) recorded D. minor minor Bischoff as a parasitoid of Sceliphrion spirifex; we have seen a female specimen of D. m. minor collected on a Sceliphrion nest at Mkuzi Game Reserve, KwaZulu-Natal (27°37'S, 32°14'E) on 3-6.iii.1990 by A.
Weaving (DJB collection) and a female of D. m. minor reared from a mud nest of "Cyphononyx antennatus (Smith)" (Pompilidae) collected at Durban on 10. i. 1945 by Marley (South African Museum collection). Weaving (1994a, 1994b, 1995) recorded the hosts of D. heterodonta Bischoff in KwaZulu-Natal as Auplopus femoralis (Arnold) (Pompilidae), Tricarinodinerus guerinii (Saussure) and Afreumenes aethiopicus (Saussure) (both Vespidae, Eumeninae), all species using mud in nest making. (The mutillid was probably misidentified, however, since that species only occurs further north.)

Peringuey (1898) reared both sexes of D. sycorax from the mud nests of S. spirifex on several occasions. Skaife (1953:325) referred to "D. guineensis" (actually D. sycorax) as having been reared from S. spirifex, but gave no authority for this, and may have been referring to Peringuey's specimens. (Incidentally, Skaife's figure 163, captioned as being of both sexes of D. guineensis "Parasitic on solitary bees" (sic), shows a male which looks like a species of Stenomutilla and a female which is prob-
ably a species of Dasylabroides.) Weaving (1994b, 1995) recorded S. spirifex, T. guerinii and Synagris analis Saussure (Vespidae, Eumeninae) as hosts of D. sycorax, and provided considerable information on the biologies of the hosts and the influence of nest type and construction on parasitism rates. In the Albany Museum (Grahamstown) there are three female and three male specimens of D. sycorax reared from a nest of S. spirifex which also yielded one female and one male of the host and was collected by N.J. Myers at the Tobacco Research Station, Trelawney, Zimbabwe, January/February 1954 (dets F.W. Gess). In addition to these records and the same host relationship recorded in this paper, D. sycorax has also been reared from multicellular mud nests of a species of eumenine vespid, possibly Delta maxillosa (de Geer) (det. C.F. Jacot-Guillarmod) or S. analis (see Weaving 1995), collected by
DJB at Lake Sibaya, KwaZulu-Natal on 13-25 March 1968. That nest yielded no host specimens, but produced six mutil-lids, five females (10-18 mm long) and one male (10 mm long). The considerable difference in sizes of individuals in this clutch is notable. The largest female has golden brown pubescence replacing the black pubescence of the other specimens and thus appears very different in color- ation. (Bischoff (1920) described a similar female specimen of this species as form aurata, and this phenomenon was first not- ed by Andre (1899:35) for other mutillids.)

The host range of D. sycorax is thus greater than previously thought, although in all cases mud is used for nest construction, whether as free multicellular aerial nests or forming the nest closures and cell par- titions in cavity nests.

Also interesting is the fact that for two of the three nests from which multiple mutillids emerged, a single male was pro- duced. This may indicate a tendency toward a biassed sex ratio as is found in some other parasitoid hymenopterons, specially those which develop gregarious- ly or quasi-gregariously, and which pro-
duce a single male that emerges early and
mates with his sisters as they emerge (e.g.
see Hardy 1994). Additional evidence is

obviously needed, but partial support
may be derived from the observation that
males of Dolichomutilla are very much rar-
er in collections than are females.

ACKNOWLEDGEMENTS

We wish to thank Ray Miller and Johan Kotze of
the University of Natal (Pietermaritzburg) and the
KwaZulu-Natal Nature Conservation Service for the
specimens. Fred Gess of the Albany Museum kindly
supplied information on specimens in his care. Fi-
nancial assistance was provided by the Foundation
for Research Development and the University of Na-
tal Research Committee.

LITERATURE CITED

Andre, E. 1899-1903. Les Mutillides. Species
d'Hymenopteres d'Europe at d'Algerie 8:1-479, pi. l-
XV.^

behaviours in the Hymenoptera (Insecta): poten-
Bayliss, P. S. & D. J. Brothers. 1996. Biology of Tri-
cholabiodes Radoszkowski in southern Africa,
with a new synonymy and review of recent bi-
ological literature (Hymenoptera: Mutillidae).

Bischoff, H. 1920-21. Monographie der Mutilliden Af-
rikas. Archiv fur Naturgeschichte 86(A): 1-830, 1
map.

Brothers, D. J. 1972. Biology and immature stages of
Pseudomethoca f frigida, with notes on other spe-
cies (Hymenoptera: Mutillidae). University of

Brothers, D. J. 1975. Phylogeny and classification of
the aculeate Hymenoptera, with special reference
to Mutillidae. University of Kansas Science Bulletin

Brothers, D. J. 1989. Alternative life-history styles of
mutillid wasps (Insecta, Hymenoptera), pp. 279-
Styles of Animals, Kluwer Academic Publishers,
Dordrecht.

Gerstaecker, A. 1857. [Descriptions.] In: Peters, Ubersicht der von ihm in Mossambique aufgefundenen und von Urn. Dr. Gerstacker bearbeiteten Hymenopteren aus den Familien der Crabronites, Sphegidae, Pompilidae und Heterogy-

[Begin Page: Page 9]

Volume 10, Number 1, 2001

Zoologie, V. Insecten und Myriopedes. Reimer, Ber-

Weaving, A. J. S. 1994a. Notes on nesting behaviour in two Afrotropical auplopine wasps, Auplopus vitripennis Smith and A. femoralis (Arnold) (Hy-

