UC-NRLF
C 3 13fl
I ) \h^
LIBRARY
OF THK
UNIVERSITY OF CALIFORNIA
OIR'T OK ?
Class
mL
^£
•x
Wl
i
X
NEW MANUAL
OF
LOGARITHMS.
NEW MANUAL
OF
LOGARITHMS
TO
SEVEN PLACES OF DECIMALS
EDITED
BY
DR. B R U H N S
DIRECTOR OF THE OBSERVATORY AND PROFESSOR OF ASTRONOMY AT LEIPZIG.
SECOND STEREOTYPE EDJTION
OF T
UNIVERSITY
01
BERNHARD TAUCHNITZ LEIPZIG 1878.
t;
IS 73
Astron. Dopt.
r e f a c e.
Kohler's Handbook of Logarithms , which has hitherto been published by Tauchnitz, and which will still be continued to be published by them, has always found a very favourable reception from the public both on account of its arrangement and its exactness. However Bremikerls^Edition of Y6^^ seven figure logarithms extended and improved well known and frequently used, and Schron's logarithmic tables are preferable for many elaborate astronomical calculations. Bremiker gives in the trigonometrical Tables the logarithms of the Sine and Tangent for the first 5 degrees to every second and the logarithms of the Sine, Tangent, Cotangent, Cosinus from o° to 45° (and therewith it is self-evident of the whole quadrant) for every 10 seconds; whilst Schron has added to the last an extensive Inter polation Table.
The publishers did not wish to be behindhand with their Hand book of logarithms and when they became aware that I was willing to undertake the necessary labour of preparing one — they determined to pre serve Kohler's in its present form as it is obviously well adapted for many purposes — and desired me to prepare an entirely new Manual, which I now lay before the reader and of which this is the principal arrangement. The logarithms of the numbers from I to 108000 as they are in Kohler have been reduced to the extent of from i to 100000 since the addition of the logarithms of the numbers from 100000 to 108000 does not appear to offer a sufficient advantage.
The logarithms of the first 6 degrees of the trigonometrical functions, Sine, Cosine, Tangent and Cotangent have been given to every second, with the addition of the differences and where the space would allow of it, of the proportional parts.
Such an arrangement has been desired in many quarters and will save the calculator much labour and waste of time spent in interpolation. This table makes an essential distinction between this and other logarithmic tables
VI Preface.
and as far as I know it is exceeded by none in completeness and facility of use.
The remaining 39 degrees of the trigonometrical functions are given to every 10 seconds, whilst in Kohler from the 9th degree they are only given to every minute.
As with these 3 Tables the work already consists of 38 sheets, we have omitted the Addition and Subtraction logarithms (Gauss's) which have been lately many times published. And we have also omitted the gonio- metrical and trigonometrical formulae contained in Kohler, as well as the other tables which though useful are not so frequently wanted; so that the present work with the exception of some few small additional Tables consists merely of the logarithms of numbers and of the trigonometrical logarithms.
The arrangement of the Tables is on a plan easily understood, not overladen with directions, printed with a clear distinct type and of undoubted correctness.
The final arrangement of the Tables is the result of much corre spondence with many eminent calculators and much thought has been bestowed upon it.
With regard to Table I., the first column which in Kohler contains the degrees and minutes contained in the adjacent number considered as seconds, is omitted and in its place, similar to what has been done by Bremiker and Schron, under the logarithms is a small table by which it is easily possible to change seconds into minutes and degrees.
In general we have adopted the form of Bremiker's table and just as he and Schron have expressed the logarithms of J~L, -—-^ under the notation S and T we have done the same, but we have placed these at the bottom of the Table and not as Kohler at the top. Further Bremiker is again also followed in this respect, that the successive numbers are given from o to 50 and from 50 to 100 (thus repeating the logarithms of the Numbers at the top and bottom of each page) instead of from o to 49 and from 50 to 99 as they stand in Kohler and Schron.
In order to find the numbers more readily, every tenth number is enclosed with horizontal lines as Bremiker has done, and a space left be tween the logarithms of every three numbers. The proportional parts are as in other tables; yet arranged again as in Bremiker, since they seem to me to be thus more readily found.
In the arrangement of the 2nd table, we have entered for the first 10 minutes (from o to 9 minutes) only the logarithms of the Sine, Cosine, Tangent, Cotangent together with the differences for every second for each single minute on one page.
In order to find the number required, more readily, in these 10 minutes we have seperated by a horizontal line every 5 seconds; so that the eye may
Preface. vn
more readily keep the line which it has taken, thus preventing uncertainty, and making the differences also, more readily distinguished. Proportional parts can only be given in these first i o minutes at large intervals of differ ences — but these are taken successively smaller and smaller. Whenever there was space among the logarithms the multiples of smaller intervals have been added.
As after 10 minutes the differences of the logarithms of Sine, Tangent and Cotangent proceeding by seconds, consisted of four figures only, it was possible to bring two minutes on to every page , if the first two decimals of each of the logarithms could be placed over, at the decades of the seconds. In the single columns for the logarithms of the Sine, Tangent and Cotangent from o° 1 i' as far as i° 20' only the five last decimals and for the Cosine only the four last decimals have been inserted, since this has been found quite sufficient. The differences are given completely for every second to the Logarithms of the Sine, Tangent and Cotangent whilst this was not necessary for the logarithms of the Cosine. From o° 10' to i° 20' no pro portional parts could be given, for otherwise the page would have been much too broad and every calculator must therefore supply these for himself when wanted. In Bremiker's table of the first 5° for every second, no proportional parts nor differences are given, while in Schron these logarithms themselves are entirely omitted.
After i° 20' the differences of the logarithms to every second consist only of three figures, and it was possible to separate 3 decimals instead of two, at every decade, by which means so much space was gained, that in the middle, at each minute, the seconds from o to 60 and from 60 to o could be repeated; yet all the proportional parts could not be given but only at intervals of 3, then of 2 and lastly of one unit.
As in the logarithms of numbers a stroke over the first figure of the decimals denotes, that the last decimal of the number standing at the pre ceding decade must be increased by a unit, while in the case where it must be diminished by a unit a small star * is inserted.
Table III. From 6° up to 45° the trigonometrical functions are given for every 10 seconds, and the arrangement is as in Bremiker and Schron, except as to the succession of the particular functions. The repetition of the first 6 degrees in intervals of 10 seconds appears to be superfluous here — Bremiker has repeated his first 5 degrees — because in tables II. and III. all the functions are given and their succession is not changed.
The succession Sine, Cosine, Tangent, Cotangent is here advisedly chosen rather than the bad order Sine, Tangent, Cotangent and Cosine used by some recently, because the calculator solves most questions by the aid of the first form and, indeed, the logarithms of the Sine and Cosine here stand ing close together, are frequently wanted at the same time.
The symmetry which in the succession Sine, Tangent, Cotangent, Co sine from above from left to right, below from right to left occurring as it
VHI Preface.
does in all the old Tables we have given up. If we consider ourselves as passing on the course of a line, and we take only two functions, then we have the symmetry for these two existing; so that appears to me to be no disadvantage.
Since we frequently require only 6 decimals and are using tables with 7 places, if a 5 stand in the last place, it is doubtful whether this has been increased; in the whole of the three tables when this has been the case a mark is placed over the 7th decimal. In calculations therefore with six decimals when 5" occurs it is simply omitted. Hence for example the loga rithm to seven places of the number 83601 = 4,9222115 and the logarithm to six places of this number is 4,922211, whilst the 7 figure logarithm of the number 91752 = 4,9626155 the six figure logarithm of this number is, since the last 5 has no mark over it = 4,962616. The mark with all the last figures as introduced by Schron does not appear to me advantageous since after repeated experience on my own part and on that of other cal culators, these marks seldom come into use and the eye is fatigued by their number.
The opinion of many calculators has been obtained on the form of the type of the Tables. More than three fourths of them find the thick Egyptian type used by Kohler and Schron to be more irksome than the old English type used by Bremiker and others. Although perhaps the beauty of the printing is increased, if the figures, stand all in one line, as the Egyptian, yet the eye distinguishes single figures more readily, and an interchange of one for another is less to be feared, if they are as in the old English type partly above the line and partly below. The 3 and the 8 for example are dis tinguished by this means, since the 3 falls below considerably, but not the 8 ; 7 and i are readily distinguished and likewise 6 and 9. The type of the figure here used is admirable for its size, the figures of Bremiker's table admirable as they are, exciting many complaints on account of their small- ness. The size of the book is not much larger than Bremiker's, notwith standing the magnitude of the figures and the printers have made every exertion to use distinct and also beautiful type.
The magnitudes log -^~- = S, log -^- = T which are at the foot of the logarithms of the numbers in table I. , and go from i o to I o seconds are given for the sake of accuracy to 8 decimals in order to obtain greater certainty in the last decimal in the Interpolations. They run from o" to 2° 46' 40 " and have a particular value for the determination of a small angle, since we can therewith reckon exactly the arcs to the trigonometrical functions of small angles even to the 3rd, 4th and 5th decimal of a second.
In the proportional parts we have generally given also the first decimal, so that in the Interpolation we may be certain to some tenths of the last decimal.
On page 186 we have given the multiple of the modulus of the natural system of logarithms, in order to convert Briggs logarithms into
Preface. IX
natural and the converse. On page 608 the arcs of the circle are expressed in parts of the radius; on page 609 the conversion of the degrees of the circle into time, hours, minutes and seconds and lastly on page 610 some Constants and the relations of the most frequently used measures of length to the metre are given.
The logarithms to the numbers to 7 places have been taken directly from Vega's "Thesaurus logarithmorum " to ten places and partly where the three last figures were 495 and 505, partly from 498 to 502 out of the loga rithms of prime numbers from i to 1 200 as they are printed in Callet's table, calculated anew and compared with the excellent tables of Kohler, Bremiker and Schron. No difference in the last place has been found from any of the known tables.
The Table II. containing the logarithms of the trigonometrical func tions sine, cosine, tangent, cotangent, have been obtained for every second in the following way ; by Dr. Low the logarithms of the sine and tangent in intervals partly of 320, partly of 256 seconds were calculated to 15 decimals and for the first four degrees for every 40 seconds, for the 5th and 6th degrees for every 32 seconds and interpolated to this number of decimal places, then again interpolated for every second to fewer decimals and finally reduced to 7 decimals. The logarithms of the cosine have been interpolated with 14 decimals for every second for all 6 degrees. For the sixth degree the loga rithms were taken of the sine for every second to 14 decimals and of the cosine for every second to 14 decimals, and from these were derived the logarithms of the tangents and cotangent, and then the whole reduced to 7 decimal places.
For the first 2 degrees an immediate comparison may be made, since they are contained to 10 decimals in Vega's "Thesaurus logarithmorum"; for the logarithms of the sine and tangent of the first 5 degrees can be compared with Bremiker's 7 figure table and lastly for all functions a com parison may be made with Taylor's. Where any difference was found the last decimal was directly calculated; in Bremiker's Edition of Vega's table to 7 places (51st ed.) we found in log tan o° 9' 59" only one error in the last decimal, whilst in Vega's Thesaurus and in Taylor (I had not Bagay* at my command) frequently differences of i and 2 units occurred in the last place.
The Table III. contains the logarithms of the trigonometrical functions for every 10 seconds taken from the Thesaurus of Vega and very carefully compared with other tables and eventually recalculated.
The examination of the logarithms has been made with the greatest precision and anxiety. They were first read by the printer: the second examination which consisted in reading them with Schron's and Bremiker's tables was made by Dr. Low and M. Leppig, the third examination by
* Bagay is to every Second of the Quadrant to 7 places, but there are no differences or proportional parts whatever.
X Preface.
Qu. Miiller and Richter, both examinations were superintended by myself, and I particularly examined the headings, the first decimals of the Sine, Cosine, Tangent and Cotangent, the differences, the accuracy of the pro portional parts, &c. A fourth examination was made by myself and Leppig with Vega's "Thesaurus logarithmorum" and Taylor's "Tables of loga rithms &c.", London 1792. A fifth examination was finally made throughout by M. Heineman. All the errors were most carefully corrected by the Printer. The fourth and fifth corrections were read from the stereotype plates and there were found only 2 errors in the logarithms of the numbers, in the logarithms of the trigonometrical functions only 1 5 , whence we may estimate the care with which the three first corrections had been made.
The publishers have omitted no trouble or cost, and hope that these tables will meet with a correspondingly favourable reception from the scien tific world.
Leipzig, August 1869.
Dr. C. Bruhns.
Introduction.
The following Theorems are indispensable for the use of logarithms.
They are:
log (A X B) = log A -f log B
log £ = log A — log B
log Am = m log A
log fk = ± log A,
or at full length: the logarithm of a product is equal to the sum of the logarithms of the factors; the logarithm of a quotient is equal to the differ ence of the logarithms of the Dividend and of the Divisor, the logarithm of a power is equal to the product of the exponent into the logarithm of the basis, and the logarithm of the mth root of a number is equal to the loga rithm of the basis divided by the exponent m of the root.
§.2.
The logarithms given in these Tables are Briggs's logarithms whose basis, as is well known is 10. Therefore we have o = log of the number i — i = log of the fraction -~-= 0,1
i= „ „ 10 —2= „ „ -^-=0,01
2 = » it IOO — 3 = „ „
3 = ff ff I00° — 4 — » it
&c. &c.
The remaining rational numbers that are not powers of 10 have ir rational logarithms, thus since 7241 <|QO t^ie ^°£ °^ 724I is eQU3^ to 3 H~ an irrational fraction 0,8597985 . . . ., the log of 0,07 <J°~I is equal to — 2 -\- the irrational fraction 0,8450980.
The common or Briggs's logarithm of a number consists therefore in general of two parts; of a whole number called the characteristic and of a fractional part called the mantissa. The last are given in the Tables; for the characteristic belonging to every number we have the following rule derived from the table given above.
The characteristic of a power of 10 greater than one is equal to the number of the figures less one; the characteristic of a proper fraction is negative and if we convert it into a decimal fraction is equal to the number of noughts which precede the significant figures. The mantissae according to what is said above are always positive and agree with the characteristic or are contrary to it according as the characteristic is positive or negative.
Since we frequently want logarithms that are not immediately given in the Tables, that must be found by Interpolation the following Theorem
XII Introduction.
must be assumed: for a small interval, the difference of the arguments is pro portional to the difference of the function ; in the present case a logarithm.
§• 3- Table I.
Pages 2 to 5 inclusive contain the logarithms of the first Chiliad. The numbers are in the column N and the logarithms belonging to them will be found in the column headed Log, that is the mantissae or decimal part of the logarithm.
Pages 6 to 185 contain the logarithms of the numbers from 1000 to 100000.
Page 1 86 contains the multiples of M and of ~- for the conversion of Briggs's logarithms into natural logarithms and conversely.
At the foot of the Table we find the values of log -^~- and log -^~ for the discovery of the logarithms of small angles and conversely. If we wish to use 6 places only we must increase the 6th figure by a unit when the last figure is 5, 6, 7, 8 or 9, but not so when the last (7th) figure is o, i, 2, 3, 4 or 5 that is 5 with a mark over.
§•4- Problem. To find the logarithm belonging to a given number.
The numbers up to 10000 are found from pages 2 to 185 in the columns with N written above them and in the next column o the logarithm belonging to them. If however the number consists of five figures (in which one or more noughts may precede or follow, for these noughts affect only the characteristic of the logarithm and not the mantissae), we seek the first four figures in the column N and then precede in this line to the right hand until we come to that column which has the fifth figure at the head. The four figures standing there make with the three separated in the column o, standing in the same line, the mantissa of the logarithm of the number required. Should there be no separated figures in this line of column o, the three figures standing next above must be taken, except in the case, where the first of the 4 figures has a mark above it, in which case we must take the next three below. The characteristic must be appended according to the rule given in §. 2.
For example it is required to find the logarithm of 14459. Find the first four figures 1445 on page 14 in the column marked N and seek on a horizontal line proceeding to the right the column over which stands the fifth figure of the number, namely 9. We find in this column 1383 and with the three separated figures 160 standing in the column marked o we have the mantissa 1601383 and annexing the characteristic the logarithm of the number 14459 is 4,1601383.
§•5.
If the number of which we seek the logarithm contain more than five figures but fewer than eight (for the 8th figure of the logarithm required from the table will be uncertain) then the excess must be interpolated by the rule given above.
Let it be required to find the logarithm of the number 219467,83.
Introduction. XIII
In table I. at page 29 is found
for the number 21946 the mantissa 3413554 21947 „ „ 3413752
consequently the difference I in the number corresponds to the difference 198 in the logarithm and to the remaining figures 783 of the number which we must consider as 0,783 belongs, according to the formula
i : 198 = 0,783 : x; x = 155,
155 is the difference of the logarithm, which difference is to be added to the smallest mantissa, so that the mantissa is
3413554 + 155 = 3413709 and with the addition of the characteristic the logarithm of the given number
is 5,34i3709-
The calculation may be facilitated by the proportional parts P. P. given at the side of the logarithm, wherein are contained the particular decimal of each difference. With the help of these the calculation stands in the follow ing form:
For the difference 198 we find at page 29 for 7 (0,7) 138,6 I „ 8 (0,08) 15,8 i sum =155, i» 3 (0,003) 0,6 J which number as before must be added to the smallest logarithm.
The whole interpolation may after a little practice be easily and certainly performed without writing down a single figure.
As another example we will find the logarithm to the number 59,487321.
We have for the number 59487 the mantissa 7744221 59488 „ 7744294
and therefore the difference 73. To this difference the P. P. are
to 3 (0,3) 21,9 „ 2 (0,02) 1,46 „ i (0,00 1 ) 0,07
sum = 23
which 23 must be added to the smallest logarithm and taking care to annex the proper characteristic the log is 1,7744244 for the number 59,487321.
§.6.
If the logarithm to a fraction is required, we may proceed in two ways, either subtract the logarithm of the denominator from the logarithm of the numerator or convert the fraction into a decimal and find the loga rithm to it in the manner pointed out above.
For example let it be required to find the logarithm of the fraction -^-4 We have the logarithm of 45 = 1,6532125 the logarithm of 532 = 2,7259116 therefore the logarithm of -^- = 0,9273009 — 2' t for which is commonly written 8,9273009 — 10.
But now since -~ = 0,084586466, we seek on page 155 the logarithm of 84586466 and again find after attending to the characteristic 0,9273009 — 2 or 8,9273009 — 10.
XIV Introduction.
§• 7- Problem. To find the number belonging to a logarithm.
Seek the first three figures of the mantissa among those separated in the o column, the four following figures in the columns marked i to 9 and take the number which will have five places of figures out of the table. If the given logarithm is not contained directly in the table we must have recourse to interpolation. The proportional parts P. P. are for this purpose. For example let it be required to find the number belonging to the logarithm 5,3413709- We find on page 29 the next smallest mantissa 34I3554 a* *ne number 21946, the next greatest mantissa 3413752 at the number 21947. The difference of the two logarithms is 198, the difference between the nearest and the given mantissa is 155 and we have the pro portion
i : x = 198 : 155, x =-^= 0,783
therefore the number 21946,783, but because the characteristic is 5 belonging to the logarithm 5,3413709 the number is 219467,83.
If we use the small tables of proportional parts the calculation will be as follows — the given logarithm 5,3413709
to the number 21946 on page 29 belongs 3413554
difference 155
With P. P. 198 belongs to 7 (0,7) 138,6
16,4
to 8 (0,08) 15,84
56
to 3 (0,003) 59
consequently the number 219460 + 7,83 = 219467,83.
Second Example. Required the number belonging to the logarithm 9,1890460 — 10. On page 16
the mantissa 1890409 belongs to the number 15454 the mantissa 1890690 belongs to the number 15455.
The difference between the greatest and least mantissa is 281, and between the given mantissa and the smallest 51, therefore
to 51
P. P. 281 for i (0,1) 28,1
22,9
for 8 (0,08) 22,48 42
for i (0,00 1 ) 281
consequently the number is 15454181 or with the addition of the char acteristic 0,15454181.
§.8.
If we wish to extract a root or raise a number to a given power, we have then according to the formula given in §. I. to multiply or divide the logarithm of the basis, by the exponent which, if the exponent is a whole number, may be easily done. It is seldom however that this is the case, so
Introduction. XV
that it is easier to take the logarithm of the number from the logarithm of the basis and to add or subtract the result from the logarithm of the exponent, then to find again the logarithm of the number, again to consider this number as a logarithm and once more to obtain the corresponding number. If for instance it is required to find the value of 4, 753 2 2-»8 We have
log to 4,7532 = 0,6769861, and this multiplied by 2,48 gives 1,678925528 to which belongs the number 47,74474. We can however proceed thus
log 0,6769861 = 9,8305798 — 10
log 2,48 = 0,3944517 _
0,2250315
to which belongs the number 1,6789259 and this considered as a logarithm corresponds to the number 47,74478 and this errs only in the last decimal which cannot be entirely avoided from that found in the other way.
As another example let it be required to find the 4,75th root of 300 then we have the log of 300 = 2,4771213 which divided by 4,75 gives 0,5214992 to which belongs the number 3,322762. We can however proceed thus
log 2,4771213 = 0,3939473
log 4,75 = 0,6766936
~ I0
to which the number 0,5214993 belongs, and this regarded as a logarithm corresponds to the number 3,322762 which agrees sufficiently well with the preceding. In the extraction of roots however it may under some cir cumstances be more convenient actually to set down the negative logarithm.
§.9-
In order with the help of the magnitudes S and T placed at the foot of Table I. to find the logarithms of the sines and tangents of small arcs and the converse ; we make use of the following formulae
log sine = log arc" -f- S
log tangent = log arc" -f- T
log arc" = log sine — S
log arc" = log tangent — T
that is, in words, the logarithm of the sine or tangent the logarithm of an arc (arcus") expressed in seconds plus S or T and inversely the logarithm of the arc in seconds is equal to the logarithm of the sine or of the tangent minus S or T.
§. 10.
Problem. It is required to find the logarithm of the sine and of the tangent of the arc of if 56",76
17' 56",76 = io76",76 gives log io76",76 = 3,0321189 According to page 7 after the required %
interpolation io76",76 S = 4,6855729
T = 4,6855788
therefore log sin = 7,7176918
log tang = 7,7176977
XVI Introduction.
Problem. It is required to find the arcs belonging to log sin 7,4897320 and log tang 8,0079482.
In Table II. we see that on page 198 and page 210 to the log sine of the arcs between o° 10' 37" and o° 10' 38" and to the log tang of the arcs between o° 35' o" and o° 35' i" belong the values of S and T on pages 4 and 28 namely S = 4,6855742 and T = 4,6855899. These subtracted from the above given logarithms give log arc = 2,8041578 and 3,3223583 to which belong the numbers (p. 113 and 28)
637^,0269 = 10' 37^,0269 and 2100^672 = 35' o",6j2.
It is self evident that we can with the magnitudes S and T find also the cosine and cotangent of angles which are between 87° 40' and 90°.
§• ii.
Table II.
contains the logarithms of the trigonometrical functions Sine, Cosine, Tan gent, Cotangent to 7 decimals to every second for the first and last 6 degrees of the quadrant, all with differences and for the most part also with proportional parts. From page 188 to 197 a minute is on every page and from page 198 to page 372 two minutes are on every page.
From o° to 6° the degrees and minutes stand at the top of the page, the seconds in the vertical column on the left, from 84° to 90° the degrees and minutes are at the bottom of the page and the seconds belonging to them in the vertical columns on the right. From page 198 to 232 the characteristic and the two first decimals of the functions (which are named on the top of the page) namely Sine, Tangent, Cotangent and from page 233 to 372 the three first decimals, are separated and placed above with the tenths of the seconds, so that in the vertical column are contained first the five last and afterwards the three last decimals of the logarithms of these functions. From page 198 to 372 the characteristic and the three first decimals of the logarithm of the Cosine are separated also.
The sign — placed on the first place of the division means that the above separated decimals of the logarithms must be increased by a unit, and the sign * that the separated decimals must be diminished by a unit when they are combined with the other decimals to take out a logarithm.
The differences of the logarithms standing in the division marked above Sine are in the division to the right and they are not here required for the Cosine; for the tangent and cotangent since they have a common difference they stand in the division between the two functions, marked above with the letters d. c. It may as well also be here mentioned that the Sine and Cosine for the whole quadrant, the tangents between o° and 45° the cotangents between 45° and 90° are proper fractions and the char acteristics of these functions have all been increased by 10 in order that the characteristic — 10 may be omitted from these functions.
§• I*--
Problem. It is required to find the logarithm of the functions sin, cos, tan
and cotan, for a given acute angle.
If the given arc is found in the Table II. then the function required is taken directly out of the corresponding column. But if this is not the case
Introduction. XVTI
we must interpolate and in doing this care must be taken whether the successive values of the function form an increasing or decreasing series, because on this it will depend, whether the quantity obtained by inter polation is to be added or subtracted from the given magnitude.
Example: It is required to find the logarithms of the sin, cos, tan and cotan of the acute angle 4° 16' 23",73. We have from page 321
log sin 4° 16' 23" = 8,8722132, d. = 2 82 increasing and with the P. P. for 7 (0,7) 197,4
» 3 (Q,03) 8,5
therefore log sin 4° 1 6' 23^,73 — 8,8722338
Further we have from page 321
log cos 4° 16' 23" — 9,9987911 log cos 4° 1 6' 24" = 9,9987909
whence we obtain without difficulty for the 0^,73 the difference i, decreasing consequently we get for log cos 4° 16' 2 3", 73 = 9,9987910. Again we have from page 321
log tan 4° 16' 23" — 8,8734221, d. c. — 284 log cotan 4° 16' 23" — 1,1265779. With the P. P. of the difference 284 we obtain for 7 (0,7) 198,8
" 3 (Q,Q3) 8,5
207
which added to the log tan and subtracted from the log cotan gives for the log tan = 8,8734428 and log cotan = 1,1265572.
§- 13.
Problem. // is required to find the angle belonging to a given trigonometrical
logarithm.
Seek the logarithm in the division which is marked either above or at the bottom with the function to which the logarithm belongs. If the given logarithm is exactly found, then we have the angle immediately and it ends with a whole number of seconds. If the logarithm is not found exactly then we take the next smallest or the next largest according as the logarithm of the arc is increasing or diminishing, and interpolate for the difference between the given logarithm and that found, with the difference given in the table for a second, for the required fraction of a second.
Example: It is required to find the arc or angle v belonging to the given log tan v = 8,7852346.
We find on page 297 the next smallest logarithm since the logarithm is increasing with the arc
log tan 8,7852057 at 3° 29' 23" and d. c. = 347; we have given log tan 8,7852346 difference = 289, whence from the proportion
347 : 289 = i" : x we obtain x = o",83.
XVIII Introduction.
With the assistance of the proportional parts we have for
289 with 347 P. P. 8 (0,8) 277,6
, u,4
3 (0,03) 10,4
again therefore 0^,83 as before and the required angle v is = 3° 29' 23",83. Second Example: It is required to find the angle v of which the given log cos v is = 8,4932917.
On page 246 we find the next greater logarithm of the cosine, because the logarithm diminishes when the arc increases
log cos 8,4933102 at 88° 12' 56" and d. — 676, we have given log cos 8,40,32017
^ — - — : — The P. P. belonging to 676 are omitted from want of
difference = 185 space, we take therefore 675 and add to the given
2 (O 2) I 3S 2 P. P. the proportional parts of the difference i, that
* ' ' every one can easily form in his head and add but
49 »* which we may perform by means of the table given
7(0,07) 47,3 in§'15'
therefore v — 88° 12' 56//,27.
It is self evident that we might have taken the next smallest logarithm that belongs to the cos 88° 12' 57". Then we should have obtained o",73 as the fraction of the second that must be subtracted from 88° 12' 57" which leads to the same result.
§• 14-
Since on account of the want of space the proportional parts are
nitted belonging to the trigonometrical functions of o° 10' as far as i° 20'
3 /e have to seek by interpolation (as in the proportion given in the first
example of the former §.) the fraction of the second required. It may also
be remarked, that from the same cause, want of space, all the differences of
the proportional parts could not be given, in such a case therefore we must
take the nearest P. P. and form the excess mentally or with the help of the
following table, either of which may be easily done.
If we v/ish to calculate with only 6 decimal places, just as with the logarithms of numbers with 6 decimals, whenever the seventh figure is o, i, 2 , 3 , 4 or 5" the sixth figure is not changed ; but it must be increased by unity when the seventh decimal is 5, 6, 7, 8 or 9. The differences and the proportional parts given in the 7 figure tables can be directly used, taking notice, that the decimal point must be moved from the seventh to the sixth place, or that the tenths of the seventh place are units of the sixth place.
§• IS-
Table III.
contains from page 374 to 507 the logarithms of the four trigonometrical functions of the remaining 78 degrees of the quadrant namely from 6° o' to 83° 60' for every tenth second. The arrangement is similar to that in Table II. only that the degrees from 6 to 44 run from above and from 45 degrees to 83 from below; only the minutes and every tenth second for the first portion of the degrees (6 . . 44) stand in two divisions to the left and for the last portion (45 . . 83) in two divisions to the right.
Introduction.
XIX
Proportional parts are not given for all differences, they are omitted for the differences of the logarithms of the Cosines from 6° to 9° and are given for the differences of the logarithms of the Sine , Tangent and Cotan gent in the first instance at intervals of 10 units and further on at 5, 4, 3, 2 and lastly one unit.
If now the porportional parts of the required difference are not given, but only that of the nearest difference, then we may either increase this mentally or make use of the small table printed on a separate page of the following form.
Table for the interpolation of the P. P.
Complement of the difference. |
|||||||||
1 1 2 |
3 |
4 |
5 |
Q |
7 |
8 |
9 |
||
I |
O.I |
O.2 |
0.3 |
0.4 |
0-5 |
0.6 |
0.7 |
0.8 |
0.9 |
2 |
O.2 |
0.4 |
0.6 |
0.8 |
I.O |
1.2 |
1.4 |
1.6 |
1.8 |
3 |
0-3 |
0.6 |
0.9 |
1.2 |
i -5 |
1.8 |
2.1 |
2.4 |
2.7 |
4 |
0.4 |
0.8 |
1.2 |
1.6 |
2.0 |
2.4 |
2.8 |
3-2 |
3-6 |
5 |
0.5 |
I.O |
L-S |
2.0 |
2-5 |
3-0 |
3o |
4.0 |
4-5 |
6 |
0.6 |
1.2 |
1.8 |
2.4 |
3-o |
3-6 |
4.2 |
4.8 |
5-4 |
7 |
0.7 |
1.4 |
2.1 |
2.8 |
3-5 |
4.2 |
4-9 |
S-6 |
6-3 |
8 |
0.8 |
1.6 |
2.4 |
3-2 |
4.0 |
4.8 |
5.6 |
6.4 |
7.2 |
9 |
0.9 |
1.8 |
2.7 |
3-6 |
4-5 |
5-4 |
6-3 |
7.2 |
8.1 |
What was said at the conclusion of §. n. with regard to Table II., applies also with respect to Table III., namely, with regard to the augmenta tion and increase of the characteristic of the logarithms of the sine and cosir » of the tangents from o° to 45° and the cotangents from 45° to 90°.
§. 1 6.
The use of Table III. is quite similar to that of Table II. only it is o be taken notice, that the numbers standing in the difference column are i )t the differences for i" as in Table II. but are for 10". Some examples will facilitate the use of the Table.
Example: It is required to find the logarithm of sin, cos, tan and cotan for the acute angle 9° 10' 45",45. We have from page 393
log sin 9° 10' 40" = 9,2027561, d. = 1303 increasing. The difference 1303 multiplied by 0,545 (for 5",45) gives 710 and this added to the above gives
log sin 9° 10' 45",45 — 9,2028271.
If we would make use of the P. P. given on page 393 we do not find the difference 1303 but only 1300, we make use of this and then again reckon for the 3 as follows:
P. P. for 5" (0,5) 650
0,4 (0,04) 52,0 0,05 (0,005) 6,5
708,5.
separate tablet for the difference 3 we have
for 0,5 1,5 ,, 0,045 o*1 so
Then from the above
sum is 7IQ again
as before. — We might have used the difference 1310 and then we should have had to have subtracted the small quantities belonging to 7.
XX Introduction.
In order to find the log cos
log cos 9° io7 40" = 9,9944044, d. = 34 decreasing, and 34 x 0,545 (for 5^,45) = — 18,53 therefore
log cos 9° 10' 45",45 = 9,9944025-
The small table of differences for 34 cannot be inserted from want of space. Again log tan 9° io7 40" — 9,2083517, d. — 1337 increasing. The nearest difference given is 1340
P. P. for 5" (0,5) 670 „ 0,4 (0,04) 53,6 „ 0,05 (0,005) 6,7 Since the difference is 3 units too great we
have to subtract 3x0, 545 — 1,6
729
therefore log tan 9° io7 45",45 = 9,2084246.
Lastly the log cotan 9° io7 40" = 0,7916483, d. = 1337 decreasing and 1337x0,545 =
therefore log cotan 9° io' 45^,45 = 0,7915754.
Second Example: It is required to find the log cotan and log sin of 56° i' g",6g.
We have on page 541 log cotan 56° i' o" = 9,8287149, d. = 45 4 decreasing. P. P. for 9" (0,9) — 408,6
„ 0,6 (0,06) — 27,2
„ 0,09 (0,009) — 4»i
therefore log cotan 56° i; g"fog = 9,8286709. For log sin 56° i' o" = 9,9186594, d. = 142 increasing.
.P.P. for 9" (o,9) 127,8
-i . » 0,6 (0,06) 8,5
„ 0,09 (0,009) _ 1,3 therefore log sin 56° i7 g",6g = 9,9186732.
It would have been easier in this example to have made use of interpolation, if we had taken 56° i7 9/7,69 = 56° I7 io77 — o/7,3i and have found the logarithm of 56° i7 io77 and interpolated for o",3i. The calculation would have stood as follows:
log cotan 56° i7 io77 = 9,8286695, d. — 454 decreasing. P.P. for — o/7,3 (0,03) 13,6
„ — 0,01 (0,00 1 ) _ 0,5 log cotan 56° i7 g",6g = 9,8286709. And we have
log sin 56° i7 io77 = 9,9186736, d. = 242 increasing. P. P. for — o77,3 (0,03) — 4,3
„ — 0,01 (0,001) — 0,1
log sin 56° i7 9^,69 = 9,9186732.
§• 17-
If we would find the acute angle belonging to a given log sin, cos, tan, cotan; then we proceed also as in Table II. We seek in the Table III. the ney* emailer or the next larger logarithm— the first when the logarithms of the sine or tangent are given and the last if the cosine or cotangent.
Introduction. XXI
We form between these given logarithms and that taken out of the table a difference which we shall call z/. We now take out of the table the difference d standing between the next smallest and next largest logarithm, and calcu late the proportion
d : z/ = 10" : x
and so find x, which added to the angle we have obtained from the table gives the required angle.
For the solution of the proportion we may also make use of the small tables of differences and their proportional parts, but as all the differences are not tabulated we must augment the proportional parts which is easily done from the table in §. 15.
Example: We have given log tan v = 0,4137916 and we seek the angle v belonging to it.
On page 464 we have the next smaller logarithm
log tan 68° 54' 30" = 0,4137495, d. — 627 the given log = 0,4137916
z/ = 421
therefore 627 : 421 = 10" : x and x = 6", 71 and the required angle v is 68° 54' 3 6", 7 1.
With the P. P. we have, as the difference of 627 is entered
421
P. P. for 6" (0,6) 376,2
44,8 „ 0,7 (0,07) 43,89
„ 0,01 (0,00 1 ) 63
and we get again 6",7i.
Second Example: It is required to find the angle v belonging to log co- tan v = 0,6067049.
On page 421 we find the next largest logarithm
log cotan 13° 53' 30" = 0,6067396, d. = 903 given logarithm = 0,6067049
A = 347
therefore 903 : 347 = 10" : x and x = 3", 84 and the required angle v is 13° 53' 33",84.
There is no difference table for 903 the nearest are 905 and 900. We may use either. If we take the first, then since 903 = 905 — 2
^ = 347
P. P. for 3" (0,3) with d = 905 271,5 1 ,,3 „ d = — 2 -0,6 JJ
76,1
P. P. for o",8 (0,08) with d = 905 72,4 | ,,o,8 „ d = — 2 — 16]
3,86
P. P. for o",04 (0,004) with d = 905 3*620 1 „ 0,04 „ d = — 2 — 8 J
and thus we again get 3^,84 just as above.
XXII
Introduction.
A well practised calculator will perform this completation of the P. P. for the most part mentally, nor is it necessary to enter all the decimals places which is here done to offer a complete example.
It has been already said in §. 16. that it is often more advantageous when we seek the angle belonging to some given log sin, log cos, log tan, log cotan not from the next smallest and greatest logarithm in the Table but contrariwise from the next greatest and next smallest so that seconds and fractions of seconds may be taken negatively.
§. 18.
The Tables II. and III. contain the logarithms of the trigonometrical functions of the first quadrant (if we limit ourselves to the four quadrants) in which all the functions are to be taken positively. In the 2nd quadrant the sine alone is positive cos, tan and cotan are negative; in the 3rd quadrant sine and cosine are negative and tan and cotangent positive; in the 4th qua drant cosine alone is positive and sin, tan, and cotangent negative.
If an arc or angle is given greater than* 90° subtract 90° from the given angle as often as possible. If we have subtracted two right angles or 1 80° then we may obtain the function which is left directly in the tables taking notice however of their signs, but if we have subtracted I or 3 right angles that is 90° or 270° then -we must seek the complement of the angle, therefore instead of the sine the cosine, instead of the tangent the cotangent or inversely taking notice likewise of the sign of the function.
We may easily fix these rules in the memory and also the signs which are used by help of the following Table
Angle |
Sine |
Cosine |
Tangent |
Cotangent |
X |
+ sin x |
+ cosx |
+ tan x |
-f- cotan x |
90° + x |
+ COSX |
— sin x |
— cotan x |
— tan x |
i8o° + x |
— sin x |
— cosx |
H-tanx |
+ cotan x |
270° -f x |
— cos x |
+ sin x |
— cotan x |
— tan x |
Conversely if we seek the arc or angle belonging to a function, we find, limiting ourselves to four quadrants, that 4 angles belong to every single value when the sign is left out of sight, but if the sign is given, then there are only 2 angles belonging to each value. We must therefore to prevent ambiguity, fix the quadrant in which the angle lies, or the sign as well as the function must be given, but even then the two functions cannot be both tangents nor both cotangents. In most cases the logarithms of two numbers are given for the determination of an angle that are proportional to the sine and cosine; for instance log asinA and log acosA and by subtraction we find log tan A. The quadrant in which the angle A lies is pointed out as well by the sign of the tangent and that of the sine or cosine.
§• J9-
The tables of the trigonometrical functions may be also used for the calculation of exponential magnitudes as well those with real exponents, on
r tne ? . - ter than 360° suLtract 360° as often as it may be necessary until
an arc is left which is less than 360°.
, Introduction. XXIII
which the so-called hyperbolic functions depend, as also those with imaginary exponents comprising the complex units. If we put
,»-* = tan — qp or p x = log tan — qp
where /* = — 0,4342945, then we obtain
sin gj = x 4- -x * cos ^ = * *. 4- ^"x ' ^n qp = —
and for imaginary arcs sin
In ix = — - — , tan ix — i cos <r , cos I'OT = —r-
fon JY> " c-ir\
where in order that it may be expressed in degrees
y is = 57,2957795 •*• For example if we have given x = o, 75 , then
IM* = — 0,3257209 = 9,6742791 — 10 = log tan ~ qp
-f-g> = 25° I7'4",i3, qr ^ 50° 34' 8",26 and therewith
log • • = log Sin5o03'4,8,,)26 = log cos 0,75 «• = 0,121 .326
^>,75_tf-o,73 j I
log - - - =I°g tan 50° 3V 8^,26 = = log 7 sm o'75 ' = 9.QI5O393
log ^ = log cos 50° 34' 8",26 — log y tan 0,75 i = 9,8028757.
If there were appended to the trigonometrical tables which contain the log sin, cos, tan and cotan an additional column, giving the log tan of the semi-angle, then we could get the logarithms of the hyperbolic functions without the necessity of seeking out the angle. The logarithm of the Tan gents facilitates also the solution of the quadratic and cubic equations which it is well known may be performed by the trigonometrical tables, as is shown in every treatise on the theory of equations.
Moreover if we should have to reckon many hyperbolic functions, then we should do better to calculate some tables from which the angle q> with the argument x may be taken and conversely with the argument qp we may take out x.
§• 20.
In conclusion we may enumerate that the Tables on page 186 for the conversion of natural logarithms into common logarithms and the inverse, that on page 608 of parts of the arc in terms of the radius on page 609 for the conversion of degrees of arc into time , hours , minutes and seconds , as well as that on page 610 of constants and the comparison of the various foot lengths of the principal continental states with the metre are so easily used that it is not necessary here to offer any further explanation or example.
Conten ts.
Preface
Introduction .............
I. Table of Briggs's or common Logarithms of the natural numbers from I to looooo and the auxiliary trigonometrical functions S and T for the calculation of the Logarithms of Sines, Tangents and Cotangents of the Angles from o to 10000 seconds, &c. &c. ..........
II. Table of the trigonometrical functions from o° to 6° and 84° to 90° for every
second 187
III. Logarithms of the trigonometrical functions from 6° o' to 84° o' for every ten
seconds 373
TABLE
OF
BRIGGSS OR COMMON LOGARITHMS
OF THE NATURAL NUMBERS
FROM 1 TO 100000
AND THE
AUXILIARY TRIGONOMETRICAL FUNCTIONS S AND T
FOR THE CALCULATION OF THE
LOGARITHMS
OF SINES, TANGENTS AND COTANGENTS OF THE ANGLES FROM 0 TO 10000 SECONDS &C. &C. '
0 — 250
N. |
Log. |
N. |
Log. |
N. |
Log. |
N. |
Log. |
N. |
Log. |
0 I 2 3 4 6 8 9 10 n 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
— cc |
50 51 52 53 54 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 11 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
698 9700 |
100 101 102 103 104 105 106 107 1 08 109 110 III 112 114 116 117 118 119 120 121 122 I23 124 125 126 127 128 129 130 131 132 133 134 135 136 138 139 140 141 142 143 144 145 146 147 148 149 150 |
000 0000 |
150 151 152 '55 156 157 158 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 176 177 178 ISO 181 182 183 184 185 186 187 188 189 190 191 192 193 194 '95 196 197 198 199 200 |
1760913 |
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
301 0300 |
000 0000 301 0300 477 1213 602 0600 698 9700 7781513 845 0980 903 0900 954 2425 |
707 5702 7160033 724 2759 7323938 740 3627 748 1880 755 8749 763 4280 770 8520 |
0043214 008 6002 0128372 0170333 021 1893 025 3059 029 3838 033 4238 037 4265 |
1789769 181 8436 1846914 187 5207 I9033I7 193 1246 195 8997 1986571 201 3971 |
303 1961 30535H 307 4960 309 6302 3ii 7539 313 8672 3159703 3*80633 320 1463 |
|||||
000 0000 |
7781513 |
041 3927 |
204 1200 |
3222193 |
|||||
041 3927 079 1812 1139434 146 1280 1760913 2O4 1200 230 4489 2552725 2787536 |
785 3298 7923917 799 3405 806 1800 8129134 819 5439 826 0748 832 5089 838 8491 |
045 3230 0492180 053 0784 056 9049 060 6978 0644580 068 1859 071 8820 075 5470 |
2068259 2095150 212 1876 2148438 2174839 22O I08l 2227165 225 3093 227 8867 |
324 2825 3263359 328 3796 3304138 332 4385 3344538 336 4597 338 4565 340 4441 |
|||||
301 0300 |
845 0980 |
079 1812 |
2304489 |
342 4227 |
|||||
3222193 342 4227 361 7278 3802112 397 9400 4H9733 431 3638 4471580 462 3980 |
851 2583 8573325 863 3229 869 2317 8750613 8808136 886 4907 892 0946 897 6271 |
0827854 0863598 0899051 0934217 096 9100 1003705 103 8037 1072100 no 5897 |
2329961 235 5284 238 0461 240 5492 243 0380 2455127 247 9733 25* 4200 2528530 |
344 3923 3463530 348 3049 350 2480 3521825 354 1084 3560259 3579348 3598355 |
|||||
4771213 |
903 0900 |
H39434 |
2552/25 |
361 7278 |
|||||
491 3617 505 1500 5185139 53i 4789 544 0680 5563025 5682017 5797836 591 0646 |
9084850 9I38I39 9190781 924 2793 9294189 934 4985 9395193 944 4827 949 3900 |
1172713 1205739 1238516 127 1048 1303338 133 5389 1367206 1398791 143 0148 |
257 6786 2600714 2624511 2648178 2671717 269 5129 271 8416 274 1578 2764618 |
3636120 365 4880 3673559 3692159 371 0679 372 9120 374 7483 376 5770 3783979 |
|||||
602 0600 |
9542425 |
146 1280 |
2787536 |
3802112 |
|||||
6127839 623 2493 633 4685 643 4527 6532125 662 7578 672 0979 681 2412 690 1961 |
9590414 963 7878 9684829 973 1279 977 7236 9822712 9867717 991 2261 995 6352 |
1492191 1522883 i55336o 1583625 161 3680 1643529 I673I73 1702617 1/31863 |
281 0334 283 3012 285 5573 2878017 290 0346 292 2561 294 4662 296 6652 2988531 |
3820170 3838154 385 6063 3873898 389 1661 390 9351 392 6970 3944517 396 1993 |
|||||
698 9700 |
000 0000 |
1760913 |
301 0300 |
397 9400 |
|||||
IN. |
. Log- |
N. |
Log. |
N. |
Log. |
N. |
Log. |
N. |
. Log. |
o"= o°o/ o" S. =4.685 5748 7 T. =4.685 5748 7 50 = o o 50 5748 6 5748 8 100 = o i 40 5748 5 5749 o 150 = o 2 30 5748 3 5749 4 200 = 0 3 20 5748 0 5750 0 |
250 — 500
X. LO.CT. |
X. Log. |
X. Log. |
X. Log. |
X. |
Log. |
||||
250 251 252 253 254 1 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 2/4 2/5 276 277 278 2/9 280 281 282 283 284 285 . 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
397 9400 |
300 301 302 303 304 305 306 307 308 309 310 311 312 313 3H 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
r7/I2I3 |
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 3/6 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
544 0680 |
400 401 402 403 404 405 406 407 408 409 410 4ii 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
602 0600 |
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
6532125 |
399 6737 401 4005 403 1205 404 8337 406 5402 408 2400 4099331 411 6197 4132998 |
4/8 5665 480 0069 481 4426 482 8736 4842998 4857214 4871384 488 5507 4899585 |
545 3071 5465427 547 7747 549 0033 5502284 55i 4500 552 6682 553 8830 555 0944 |
603 1444 604 2261 605 3050 6063814 6074550 608 5260 609 5944 610 6602 611 7233 |
6541765 655 1384 6560982 6570559 6580114 6589648 659 9162 660 8655- 661 8127 |
|||||
4149733 |
491 3617 |
5563025 |
612 7839 |
6627578 |
|||||
4166405 4183013 4199557 421 6039 423 2459 4248816 4265113 428 1348 429 7523 |
492 7604 4941546 495 5443 496 9296 4983106 499 6871 501 0593 5024271 503 7907 |
557 5072 5587086 559 9066 561 1014 562 2929 563 4811 564 6661 565 8478 5670264 |
6138418 6148972 6159501 6170003 618 0481 6190933 620 1361 621 1763 622 2140 |
663 7009 664 6420 665 5810 666 5180 6674530 6683859 6693169 670 2459 671 1728 |
|||||
43i 3638 |
505 1500 |
568 2017 |
623 2493 |
672 0979 |
|||||
432 9693 434 5689 436 1626 437 7506 4393327 440 9091 442 4798 444 0448 445 6042 |
506 5050 50/8559 509 2025 5J05450 5118834 5132176 5H5478 5158738 5I7I959 |
5693739 5705429 571 7088 5728716 5740313 575 1878 57634H 5774918 578 6392 |
624 2821 6253125 626 3404 627 3659 6283889 629 4096 6304279 631 4438 6324573 |
673 0209 673 9420 6748611 675 7783 676 6936 677 6070 6785184 6794279 6803355 |
|||||
447 I58° |
5185139 |
579 7836 |
633 4685 |
681 2412 |
|||||
448 7063 450 2491 451 7864 4533183 454 8449 456 3660 4578819 459 3925 460 8978 |
5198280 521 1381 522 4442 523 7461 525 0448 5263393 527 6299 5289167 5301997 |
5809250 5820634 583 1988 5843312 585 4607 586 5873 5877110 5888317 589 9496 |
634 4773 635 4837 636 4879 6374S97 638 4893 639 4865- 640 4814 641 4741 642 4645 |
682 1451 683 0470 683 9471 684 8454 6857417 686 6363 687 5290 6884198 689 3089 |
|||||
462 3980 |
53i 4789 |
591 0646 |
643 4527 |
690 1961 j |
|||||
463 8930 465 3829 466 8676 468 3473 469 8220 4712917 472 7564 4742163 4756712 |
5327544 5340261 535 2941 5365584 5378191 5390761 540 329" 54i 5792 5428254 |
592 1768 593 2861 594 3926 595 4962 596 597i 597 6952 598 7905 5998831 600 9729 |
6444386 645 4223 646 4037 647 3830 648 3600 649 3349 650 3075 651 2780 16522463 |
691 0815 691 9651 692 8469 693 7269 694 6052 6954817 6963564 697 2293 698 1005 |
|||||
477 1213 |
544 0680 |
.602 0600 |
16532125 |
698 9700 |
|||||
X. ! - Log. |
N. - Log. |
N. Log. |
X. Log. |
X. Log. |
|||||
250"= o°4'io" S. =4.685 5747 6 T. =4.685 5750 8 300 = o 5 o 5747 i 5751 7 350 = o 5 50 5746 6 5752 8 400 = o 6 40 5745 9 5754 i 450 = o 7 30 5745 2 5755 6 |
500 — 750
N. |
Log. |
N. |
Log. |
N. |
Log. |
N. |
Log. |
N. |
Log. |
500 |
698 9700 |
550 |
7403627 |
600 |
778I5I3 |
650 |
8129134 |
700 |
845 0980 |
501 502 503 504 505 506 507 508 509 |
699 8377 700 7037 701 5680 702 4305 703 2914 704 1505 705 0080 705 8637 7067178 |
55i 552 553 554 555 556 557 558 559 |
741 1516 741 9391 7427251 743 5098 744 2930 745 0748 745 8552 746 6342 7474118 |
60 1 6O2 603 604 605 606 607 608 609 |
778 874? 779 596S 7803173 781 0369 78i 7554 782 4726 783 1887 783 9036 7846173 |
651 652 653 654 655 656 657 658 659 |
813 5810 8142476 8149132 815 5777 8162413 8169038 8175654 818 2259 8188854 |
701 702 703 704 705 706 707 708 709 |
845 7180 8463371 846 9553 847 5727 848 1891 848 8047 8494194 8500333 850 6462 |
510 |
707 5702 |
560 |
748 1880 |
610 |
7853298 |
660 |
8195439 |
710 |
851 2583 |
511 512 5^3 5H 515 516 5^7 518 519 |
708 4209 709 2700 7101174 7109631 711 8072 7126497 713 4905 7143298 715 1674 |
561 562 563 564 565 566 567 568 569 |
748 9629 749 7363 750 5084 751 2791 7520484 752 8164 7535831 754 3483 755 1123 |
611 612 613 614 6i5 616 617 618 619 |
7860412 7867514 787 4605 788 1684 7888751 789 5807 790 2852 790 988^ 791 6906 |
661 662 663 664 665 666 667 668 669 |
820 2015" 8208580 8215135 822 1681 8228216 823 4742 824 1258 824 7765- 825 4261 |
711 712 7J3 714 715 716 717 718 719 |
851 8696 8524800 853 0895 853 6982 8543060 8549130 8555192 856 1244 856 7289 |
520 |
7160033 |
570 |
755 8749 |
620 |
7923917 |
670 |
826 0748 |
720 |
857332^ |
521 522 523 524 525 526 527 528 529 |
7168377 7176705 7185017 719 33*3 7201593 7209857 721 8106 722 6339 723 4557 |
57i 572 573 574 575 576 577 578 579 |
7566361 7573960 758 1546 7589119 759 6678 760 4225 761 1758 761 9278 762 6786 |
621 622 623 624 625 626 627 628 629 |
7930916 793 7904 794 4880 795 1846 795 8800 796 5743 797 2675 797 9596 798 6506 |
671 672 673 674 675 676 677 678 679 |
8267225 827 3693 8280151 828 6599 8293038 829 9467 830 5887 831 2297 831 8698 |
721 722 723 724 725 726 727 728 729 |
8579353 8585372 859 1383 8597386 8603380 8609366 861 5344 862 1314 862 7275 |
530 |
724 2759 |
580 |
763 4280 |
630 |
799 3405 |
680 |
832 5089 |
730 |
863 3229 |
531 532 533 534 535 536 537 538 539 |
725 0945 7259116 726 7272 7275413 7283538 729 1648 729 9743 7307823 731 5888 |
581 582 583 584 585 586 587 588 589 |
764 1761 764 9230 765 6686 7664128 7671559 767 8976 7686381 769 3773 770H53 |
63i 632 633 634 635 636 637 638 639 |
800 0294 800 7171 80 1 4037 802 0893 802 7737 803 4571 804 1394 804 8207 805 5009 |
681 682 683 684 685 686 687 688 689 |
833 H71 833 7844 834 4207 8350561 835 6906 8363241 8369567 837 5884 8382192 |
73 1 732 733 734 735 736 737 738 739 |
8639174 864 5111 865 1040 865 £961 * -2873 866 8778 8' - 467? 860 056^ 868 6444 |
540 |
7323938 |
590 |
7708520 |
640 |
806 1800 |
690 |
838 8491 |
740 |
869 2317 |
54i 542 543 544 545 546 547 548 549 |
733 1973 733 9993 734 7998 735 5989 7363965 7371926 737 9873 738 7806 739 5723 |
59i 592 593 594 595 596 597 598 599 |
77i 587S 7723217 773 0547 773 7864 7745170 775 2463 775 9743 7767012 7774268 |
64i 642 643 644 645 646 647 648 649 |
806 8580 807 5350 808 2110 808 8859 809 5597 8102325 8109043 8H5750 812 2447 |
691 692 693 694 695 696 697 698 699 |
839 478o 840 1 06 1 840 7332 841 359J 841 9848 842 6092 843 2328 843 8554 844 4772 |
741 742 743 744 745 746 747 748 749 |
8(39 8182 870 4039 870 9888 871 5729 8721563 872 7388 873 3206 873 9016 8744818 |
550 |
7403627 |
600 |
778i5i3 |
650 |
812 9134 |
700 |
845 0980 |
750 |
8750613 |
N. |
Log. |
N. |
Log. |
N. |
Log. |
N. |
Log. |
N. |
Log. |
5oc 55C 6oc 65C 7oc |
"= 0° = 0 = 0 I = 0 I = O I |
8' 20" £ 9 10 0 0 o 50 i 40 |
. = 4.6* |
}5 5744 4 5743 5 5742 5 574i 5 5740 3 |
rp |
4-685 575 575 576< 576 576 |
7 2 ) o 3 9 3 o 5 3 |
• |
750 — 1000
X. | Log. |
X. | Log. |
X. |
Log. |
N. | Log. |
X. |
Log. |
|||
750 75i 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 .780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797' 798 799 800 |
8750613 |
800 801 802 803 804 805 806 807 808 809 810 811 812 8i3 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 84i 842 843 844 845 846 847 848 849 850 |
903 0900 |
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 8/2 873 874 8/5 876 877 878 8/9 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
9294189 |
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939- 940 941 942 943 944 945 946 947 948 949 950 |
954 2425 |
950 95i 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 9/8 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 |
977 7236 |
875 6399 8762178 8/6 7950 8773713 877 9470 878 5218 879 0959 879 6692 8802418 |
903 6325 9041744 9Q471 55 905 2560 905 7959 9063350 906 8735 9074114 907 9485 |
929 9296 9304396 930 9490 93i 4579 931 9661 932 4738 932 9808 933 48/3 933 9932 |
9547248 955 2065 9556878 956 1684 956 6486 957 1282 957 6073 9580858 958 5639 |
978 1805 978 6369 9790929 979 5484 9800034 9804579 9809119 98i 3655 981 8186 |
|||||
8808136 |
908 4850 |
934 4985 |
9590414 |
982 2712 |
|||||
881 3847 881 9550 882 5245 883 0934 8836614 8842288 884 7954 885 3612 885 9263 |
909 0209 909 5560 9100905 910 6244 911 1576 911 6902 912 2221 9127533 9132839 |
935 0032 935 50/3 9360108 9365137 9370161 93751/9 9380191 9385197 9390198 |
9595184 959 9948 960 4708 960 9462 961 4211 961 895^ 962 3693 962 8427 9633155 |
9827234 983 i/5i 983 6263 984 0770 984 5273 9849771 985 4265 985 8754 9863238 |
|||||
886 4907 |
9I38I39 |
9395193 |
963 /8/8 |
9867717 |
|||||
8870544 8876173 888 179^ 8887410 8893017 8898617 890 4210 890 9796 891 5375 |
9H3432 9148718 9153998 9159272 9164539 9169800 9I75055 9180303 9185545 |
9400182 9405165 941 0142 9415114 9420081 942 5041 942 9996 943 4945 943 9889 |
964 2596 964 7309 965 2017 965 6720 966 1417 966 6110 967 0797 967 5480 9680157 |
9872192 987 6663 988 1128 988 5590 989 0046 989 4498 989 8946 9903389 990 7827 |
|||||
892 0946 |
9190781 |
944 4827 |
9684829 |
991 2261 |
|||||
8926510 893 2068 893 7618 8943161 894 8697 895 4225 895 9747 896 5262 897 0770 |
919 6010 9201233 920 6450 921 1661 921 6865 922 2063 922 7253- 923 2440 923 7620 |
944 9759 945 4686 945 9607 946 4523 946 9433 947 4337 947 9236 9484130 948 9018 |
968 9497 9694159 9698816 9/o 3469 970 8116 971 2758 971 7396 9722028 9726656 |
991 6690 992 1115" 9925535 9929951 993 4362 993 8769 9943172 994 7569 995 1963 |
|||||
8976271 |
924 2/93 |
949 3900 |
973 12/9 |
995 6352 |
|||||
898 1765 898 7252 899 2732 899 8205 900 3671 9009131 901 4583 902 0029 902 5468 |
924 7960 9253121 925 8276 926 3424 9268567 927 3704 927 8834 9283959 928 9077 |
949 87/7 9503649 9508515 951 3375 951 8230 952 3080 952 7924 953 2/63 953 7597 |
9735896 974 0509 9745H7 974 9720 97543*8 9758911 9/6 3500 976 8083 9772662 |
996 0737 9965117 996 9492 997 3864 9978231 998 2593 9986952 999 1305 9995655 |
|||||
903 0900 |
9294189 |
954 2425 |
9777236 |
OOO OOOO |
|||||
X. Log. |
X. Log. |
X. i Leg. |
X. ! Log. |
X. |
Log. |
||||
750"= oci2'3o" $.=4.685 5739 i T. =4.685 5767 8 800 = o 13 20 5737 8 577° 4 850 = o 14 10 5736 4 5773 3 900 = o 15 o 5734 9 57/6 2 950 = o 15 50 5733 3 5779 4 |
1000 — 1050
N. |
o I i |
2 3 |
4 |
5 |
6 |
7 |
8 |
9 |
P. P. |
|||||
1000 01 02 03 04 05 06 07 08 09 1010 II 12 13 14 15 16 17 18 19 1020 21 22 23 24 26 27 28 29 1030 31 32 33 34 35 36 37 38 39 1040 41 42 43 44 45 46 47 48 49 1050 |
000 0000 |
0434 |
0869 |
1303 |
r737 |
2171 |
260^ |
3039 |
3473 |
3907 |
i 2 3 4 S 6 7 8 9 i 2 3 4 i 7 8 9 i 2 3 4 5 6 7 8 9 i 2 3 4 5 6 9 i 2 3 4 |
435 43.5 87.0 130.5 *74.o 217.5 261.0 304.5 348.0 391-5 432 43-2 86.4 129.6 172.8 216.0 259.2 302.4 345-6 388.8 429 42.9 85.8 128.7 171.6 214.5 257-4 300.3 343-2 386.1 426 42.6 85.2 127.8 170.4 213.0 255-6 298.2 340.8 383.4 423 42.3 84.6 126.9 169.2 |
434 43-4 86.8 130.2 173-6 217.0 260.4 303.8 347-2 390.6 431 43.1 86.2 129.3 172.4 215.5 258.6 301.7 344-8 387.9 428 42.8 85.6 128.4 171.2 214.0 256.8 299.6 342.4 385-2 425 42.5 85.0 127.5 170.0 212.5 255.0 297.5 340.0 382.5 422 42.2 84.4 126.6 168.8 |
433 43.3 86.6 129.9 173.2 216.5 259.8 303.1 346.4 389.7 430 43.0 86.0 129.0 172.0 215.0 258.0 301.0 344-0 387-0 427 42.7 85.4 128.1 170.8 213.5 256.2 298.9 341.6 384.3- 424 42.4 84.8 127.2 169.6 212. 0 254.4 296.8 339-2 381.6 421 42.1 84.2 126.3 168.4 |
4341 8677 ooi 3009 7337 002 1661 5980 003 029^ 4605 8912 |
477^ 9111 3442 7770 2093 6411 0726 5036 9342 |
5208 9544 3875 8202 252^ 6843 1157 5467 9772 |
5642 9977 4308 863? 2957 7275 1588 5898 0203 |
6076 0411 4741 9067 3389 7706 2019 6328 0633 |
6510 0844 5174 9499 3821 8138 2451 6759 1063 |
6943 1277 5607 9932 4253 8569 2882 7190 H93 |
7377 1710 6039 0364 468^ 9001 3313 7620 1924 |
7810 2143 6472 0796 5116 9432 3744 8051 2354 |
8244 2576 690^ T228 5548 9863 4174 8481 2784 |
|||||
004 3214 |
3%4 |
4074 |
4504 |
4933 |
5363 |
5793 |
6223 |
6652 |
7082 |
|||||
7512 005 1805 6094 006 0380 4660 8937 007 3210 7478 008 1742 |
7941 2234 6523 0808 5088 936^ 3637 7904 2168 |
8371 2663 6952 1236 55i6 9792 4064 8331 2594 |
8800 3092 7380 1664 5944 0219 4490 8757 3020 |
9229 352i 7809 2092 6372 0647 4917 9184 3446 |
9659 3950 8238 2521 6799 1074 5344 9610 3872 |
0088 4379 8666 2949 7227 1501 5771 0037 4298 |
0517 4808 9094 3377 7651 1928 6198 0463 4724 |
0947 5237 9523 38o^ 8082 2355 6624 0889 5150 |
T376 5666 9951 4233 8510 2782 7051 1316 5576 |
|||||
6002 |
6427 |
6853 |
7279 |
7704 |
8130 |
8556 |
8981 |
9407 |
9832 |
|||||
009 0257 4509 8756 oio 3000 7239 on 1474 5704 9931 0124154 |
0683 4934 9181 3424 7662 1897 6127 0354 4576 |
1108 5359 9605 3848 8086 2320 6550 0776 4998 |
1533 5784 0030 4272 8510 2743 6973 1198 5420 |
1959 6208 0454 4696 8933 3166 739'6 162 1 5842 |
2384 6633 0878 5120 9357 3590 7818 2043 6264 |
2809 7058 T303 5544 9780 4013 8241 2465 6685 |
3234 7483 1727 5967 0204 .4436 8664 2887 7107 |
3659 7907 2151 6391 0627 4859 9086 33io 7529 |
4084 8332 2575 6815- 1050 5282 9509 3732 795i |
|||||
8372 |
8794(9215 |
9637 |
0059 |
0480 |
0901 |
T323 |
T744 |
2165 |
||||||
0132587 6797 014 1003 5205 9403 0153598 7788 016 1974 6i55 |
3008 7218 1424 5625 9823 4017 8206 2392 6573 |
3429 7639 1844 6045 0243 4436 8625 2810 6991 |
3850 8059 2264 6465 0662 485^ 9044 3229 7409 |
4271 8480 268^ 6885 1082 5274 9462 3647 7827. |
4692 8901 3ioS 730^ 1501 5693 9881 4065 824^ |
5H3 932i 3525 772^ 1920 6112 0300 4483 8663 |
5534 9742 3945 8144 2~340 6531 0718 4901 9080 |
5955 0162 4365 8564 2759 6950 Ti37 53*9 9498 |
6376 5583 4785 8984 5178 7369 T555 5737 9916 |
|||||
6 7 8 9 i 2 3 4 5 6 7 8 9 i 2 3 4 S 6 7 8 9 |
253.8 296.1 338.4 380.7 420 42.0 84.0 126.0 168.0 210.0 252.0 294.0 336.0 378.o 417 41.7 83.4 125.1 166.8 208.5 250.2 291.9 333-6 375-3 |
253-2 295.4 337-6 379-8 419 41.9 83.8 !25-7 167.6 209.5 251.4 293.3 335-2 377-1 416 41.6 83.2 124.8 166.4 208.0 249.6 291.2 332.8 374-4 |
252.6 294.7 336.8 378.9 418 41.8 83.6 125.4 167.2 209.0 250.8 292.6 334.4 376.2 415 41.5 83.0 124.5 166.0 207.5 249.0 290.5 332.0 373-5 |
|||||||||||
0170333 |
0751 |
1168 |
1586 |
2003 |
2421 |
2838 |
3256 |
3673 |
4090 |
|||||
4507 8677 018 2843 700^ 019 1163 5317 9467 020 3613 7751 |
4924 9094 3259 7421 1578 5732 9882 4027 8169 |
5342 9511 3676 7837 1994 6147 0296 4442 8583 |
5759 9927 4092 8253 2410 6562 0711 4856 8997 |
6176 0344 4508 8669 282^ 6977 Ti26 5270 9411 |
6593 0761 492S 9084 3240 7392 T54Q 5684 9824 |
7010 Ti77 534i 9500 3656 7807 T95S 6099 0238 |
7427 T594 5757 9916 4071 8222 2369 6513 0652 |
7844 2010 6173 3332 4486 8637 2784 6927 To66 |
8260 2427 6589 0747 4902 9052 3198 734i T479 |
|||||
021 1893 |
2307 |
2720 |
3134 |
3547 |
396i |
4374 |
4787 |
5201 |
56l4 |
|||||
U- N< |
0 |
1 |
o |
3 |
4 |
5 |
6 |
1 |
8 |
9 |
P. P. |
|||
10000"= 2°46'4o" 1000"= o°i6'4O" S. = 4-685 5731 7 T. = 4.685 5782 7 10100 = 2 48 20 1010 = o 16 50 5731 3 5783 4 I020O = 2 50 0 1020 = 0 17 0 573! O 5784 I 10300 = 2 51 40 1030 = o 17 10 5730 6 5784 8 10400 = 2 53 20 1040 = o 17 20 5730 3 5785 5 |
1050 — 1100
N. |
0 1 2 i 3 i 4 |
5 6 7 | 8 |
9 |
P. P. |
||||||||||
1050 |
0211893 2307:2720 3134 3547 |
3961 |
4374 |
4787 |
5201 |
5614 |
||||||||
51 |
6027 |
6440 |
6854 |
7267 |
7680 |
8093 |
8506 |
8919 |
9332 |
9745 |
i |
414 41.4 |
413 41 3 |
412 41 2 |
52 |
0220157 |
057° |
0983 |
1396 |
1808 |
2221 |
2634 |
3046 |
3459 |
3871 |
2 |
82.8 |
82.6 |
82;4 |
53 |
4284 |
4696 |
5109 |
5521 |
5933 |
6345 |
6758 |
7170 |
7582 |
7994 |
3 4 |
124.2 165.6 |
123.9 165.2 |
123.6 164.8 |
54 |
8406 |
8818 |
9230 |
9642 |
0054 |
0466 |
0878 |
1289 |
1701 |
2113 |
5 |
207.0 |
206.5 |
206.0 |
55 |
023 2523- |
2936 |
3348 |
3759 |
4171 |
4582 |
4994 |
5405 |
.5817 |
6228 |
6 240.4 7 280 £ |
247.8 280 i |
247.2 288.4 |
|
56 |
6639 |
7050 |
7462 |
7873 |
8284 |
8695 |
9106 |
9517 |
9928 |
0339 |
' y- 8 33L2 |
*uy. j. 330.4 |
329.6 |
|
Q 372 6 |
OTT i |
370 8 |
||||||||||||
57 |
0240750 |
1161 |
1572 |
1982 |
2393 |
2804 |
3214 |
3625 |
4036 |
4446 |
y j/^*^ j/ -•/ |
o/u»° |
||
58 |
4857 |
5267 |
5678 |
6088 |
6498 |
6909 |
7319 |
7729 |
8i39 |
8549 |
411 |
410 |
409 |
|
59 |
8960 |
9370 |
9780 |
0190 |
0600 |
TOIO |
1419 |
1829 |
2239 |
2649 |
i 2 |
41.1 82.2 |
41.0 82.0 |
40.9- 81.8 |
1060 |
025 3059 |
3468 |
3878 |
4288 |
4697 |
510" |
55J6 |
5926 |
6335 |
6744 |
3 4 |
123.3 164.4 |
123.0 164.0 |
I22.7 163,6 |
61 |
7154 |
7563 |
7972 |
8382 |
8791 |
9200 |
9609 |
0018 |
0427 |
0836 |
5 |
205.= |
205.0 |
204.5 |
62 |
026 1245 |
1654 |
2063 |
2472 |
2881 |
3289 |
3698 |
4107 |
4515 |
4924 |
61240.01240.0:245.4 7 287.7 '287.0 '286.3 |
|||
63 |
5333 |
5741 |
6150 |
6558 |
6967 |
7375 |
7783 |
8192 |
8600 |
9008 |
8j32§.8 328.0 327.2 |
|||
64 |
9416 |
9824 |
0233 |
0641 |
T049 |
T457 |
T86J |
2273 |
2680 |
3088 |
9 369.9'369.o 368.1 |
|||
65 |
027 3496 |
3904 |
4312 |
4719 |
5127 |
5535 |
5942 |
6350 |
6757 |
7i65 |
408 i 407 |
406 |
||
66 |
7572 |
7979 |
8387 |
8794 |
9201 |
9609 |
0016 |
0423 |
0830 |
T237 |
i 2 |
40.8 81.6 |
40.7 81.4 |
40.6 81.2 |
67 |
028 1644 |
2051 |
2458 |
2865 |
3272 |
3679 |
4086 |
4492 |
4899 |
5306 |
3 |
122.4 |
122. 1 |
121. 8 |
68 |
5713 |
6119 |
6526 |
6932 |
7339 |
7745 |
8152 |
8558 |
8964 |
9371 |
4 I |
163.2 2O.1 O |
162.8 |
162.4 |
69 |
9777 |
0183 |
0590 |
0996 |
1402 |
T8o8 |
2214 |
2620 |
3026 |
3432 |
6 |
•^^-t.0 244.8 |
2O3.5 *-»-'o>N-' 244.2 243.6 |
|
1070 |
0293838 |
4244 |
4649 |
5055 |
546i |
5867 |
6272(6678 |
7084 | 7489 |
7 8 |
285.6 326.4 |
284.9 284.2 325.6h24.8 |
|||
71 |
7895 |
8300 |
8706 |
9111 |
95l6 |
9922 |
0327 |
0732 |
"38 |
T543 |
9 |
367.2 |
366.31365.4 |
|
72 |
030 1948 |
2353 |
2758 |
3163 |
3568 |
3973 |
4378 |
4783 |
5188 |
5592 |
405 |
404 |
403 |
|
73 |
5997 |
6402 |
6807 |
7211 |
7616 |
8020 |
8425 |
8830 |
9234 |
9638 |
i 2 |
40.5 81.0 |
40.4 80.8 |
40.3 80.6 |
74 |
031 0043 |
0447 |
0851 |
1256 |
1660 |
2064 |
2468 |
2872 |
3277 |
3681 |
3 |
121.5 |
121. 2 |
120.9 |
75 |
4085 |
4489 |
4893 |
5296 |
5700 |
6104 |
6508 |
6912 |
7315 |
7719 |
4 - |
IO2.O 2O2 ^ |
161.6 |
161.2 |
76 |
8123 |
8526 |
8930 |
9333 |
9737 |
0140 |
0544 |
0947 |
T35Q |
T754 |
5 6 |
243.0 |
242.4 |
201.5 241.8 |
77 |
0322157 |
2560 |
2963 |
3367 |
3770 |
4173 |
4576 |
4979 |
5382 |
5785 |
7 8 |
283.5 282.8 324.0 323.2 |
282.1 322.4 |
|
78 |
6188 6590 |
6993 |
7396 |
7799 |
8201 |
8604 |
9007 |
9409 |
9812 |
9 364.5 363.6 |
362.7 |
|||
79 |
033 0214 0617 1019 |
1422 |
1824 |
2226 |
2629 |
3031 |
343313835 |
402 1 401 |
400 |
|||||
1080 |
4238] 4640 | 5042 |
5444 |
5846 |
6248 |
6650 |
7052 |
7453 7855 |
i |
40.2] 40.1 Rn l\ fl^ o |
40.0 80 o |
||||
81 |
8257 |
8659 |
9060 |
9462 |
9864 |
0265 0667 |
To68 |
T47o|T87i |
3 120.6 120.3 |
120.0 |
||||
82 83 |
034 2273 6285 |
2674 6686 |
3075 7087 |
3477 7487 |
3878 7888 |
4279 1 4680 8289 i 8690 |
5081 9091 |
5482 5884 9491:9892 |
4 5 6 |
loo.e 160.4 2OI.O 2OO.5 241.2 240.6 |
160.0 200.0 240.0 |
|||
84 |
0350293 |
0693 |
1094 |
1495 |
1895 |
V 2296 1 2696 |
3096 |
3497 3897 |
7 8 |
281.4 280.7 280.0 321.6,320.8 320.0 |
||||
85 |
4297 |
4698 |
5098 |
5498 |
5898 |
6298 1 6698 |
7098 |
7498 j 7898 |
0 361.81360.9 360.0 |
|||||
86 |
8298 |
8698 |
9098 |
9498 |
9898 |
0297 0697 |
1097 |
1496 1896 |
i 399 1 398 |
397 |
||||
87 |
0362295 |
2695 |
3094 |
3494(3893 |
4293 |
4692 |
5091 5491 5890 |
39-9 |
39.8 |
39.7 |
||||
88 |
6289 |
6688 |
7087 |
748617885 |
8284 |
8683 |
9082 j 9481 |
9880 |
2 |
79.8 |
79.6 79.4 |
|||
89 |
037 0279 |
0678 |
1076 |
H75 11874 |
2272 |
2671 |
3070 j 3468 |
3867 |
4 159.6 |
119,4 II9.* 159.2 158.8 |
||||
1090 |
4265 |
4663 1 5062 |
546015858 |
6257 |
6655 |
7053 i 7451 : 7849 |
51199.5 199.0.198.5 6,239.4 238.8 238.2 |
|||||||
91 |
824818646 9044 |
9442 9839 |
0237 |
0635 |
T033 |
1431 1829 |
7)279.3 278.6 8 319.2 318.4 |
277.9 317.6 |
||||||
92 |
0382226 |
2624 |
3022 |
3419 3817 |
4214 |
4612 |
5009 |
5407 5804 |
9 359.11358.2 |
357.3 |
||||
93 |
6202 |
6599 |
6996 |
7393 I 779i |
8188 |
8585 |
8982 |
9379 9776 |
(3961395 |
394 |
||||
94 |
0390173 |
0570 |
0967 |
1364 |
1761 |
2158 |
2554 |
2951 |
3348 |
3745 |
i |
39-6 |
39-5 |
39-4 |
95 |
4141 |
4538 |
4934 |
533i |
5727 |
6124 |
6520 6917 |
7313 |
7709 |
2 |
n8°8 |
79.o |
78.8 |
|
96 |
8106 |
8502 |
8898 |
9294 |
9690 |
0086 |
0482 j 0878 |
1274 |
1670 |
3 4 |
158^ |
118.5 158.0 |
157-6 |
|
97 98 |
040 2066 6023 |
2462 6419 |
2858 6814 |
3254 7210] |
3650 7605 |
4045 8001 |
4441 i 4837 8396 8791 |
5232 5628 9187 9582 |
5 6 7 |
198.0 237.6 277.2 |
197.51197.° 237.0236.4 276.5 275.8 |
|||
99 |
9977 |
0372 |
0767 |
1162 1557 |
"195212347 2742 |
3137 3532 |
8316.8 9 356.4 |
316.0315.2 T^.(;h'U.6 |
||||||
1100 |
0413927 4322 14716 5111 5506 |
5900)6295 669017084 7479 |
||||||||||||
X. |
0 1 2 ! 3 ' 4 |
5 6 7 8 I 9 |
P. P. |
|||||||||||
10500"= 2°55' o" 1050"= o°i7'3o |
S. =4.685 5729 9 T. =4.685 5786 2 |
|||||||||||||
10600 = 2 56 40 1060 = 0 17 40 5729 6 5786 9 |
||||||||||||||
10-00 = 2 58 20 10-0 = 0 17 50 5729 2 5787 6 |
||||||||||||||
10800 = 300 1080 = o 18 o 5728 8 5788 4 |
||||||||||||||
10900 = 3 i 40 1090 = o 18 10 5/28 5 5789 i |
1100 — 1150
N. |
0 1 1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
P. P. |
|||
1100 01 02 03 04 05 06 07 08 09 1110 II 12 13 14 II 17 18 19 1120 21 22 23 24 25 26 27 28 29 1130 31 32 33 34 35 36 37 38 39 1140 41 42 43 44 45 46 47 48 49 |
041 3927 |
4322 |
4716 |
Sin |
5506 |
5900 |
6295 | 6690 |
7084 |
7479 |
i 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 •9 i 2 3 4 5 6 7 8 9 i 2 3 4 5 6 8 9 i |
395 39-5 79.° 118.5 138.0 X97.5 237.o 276.5 316.0 355. 5 392 39.2 |
394 39.4 78.8 "8.2 *57.6 197.0 236.4 275.8 315.2 354.6 391 39.i |
393 39.3 78.6 "7-9 IS7.2 196.5 235.8 275.1 314.4 353-7 390 39.o |
7873 042 1816 5755 9691 043 3623 755i 044 1476 5398 9315 |
8268 2210 6149 0084 4016 7944 1869 5790 9/07 |
8662 2604 6543 0477 4409 8337 2261 6181 0099 |
9056 2998 6936 0871 4802 8729 2653 6573 0490 |
945i 3392 7330 1264 5I9J 9122 3045 6965 0882 |
9845 3786 7723 T657 5587 95H 3437 7357 1273 |
0239 4180 8117 2050 5980 9907 3829 7749 1664 |
0633 4574 8510 244.4 6373 0299 4222 8140 2056 |
T028 4968 8904 2837 6766 0692 4614 8532 2447 |
1422 536i 9297 3230 7159 1084 5006 8924 2839 |
||||
0453230(3621 |
4012 |
4403 |
4795 |
5186 |
5577 |
5968 |
6359 |
6750 |
117.6 156.8 196.0 235.2 274.4 313.6 352.8 389 38.9 77.8 "6.7 155.6 194.5 233.4 272.3 3H.2 350.1 386 38.6 77-2 "5.8 154.4 i93.0 231.6 270 2 308.8 347.4 383 38.3 76.6 "4-9 153.2 i9r-5 229.8 268.1 306.4 344.7 380 38.0 76.0 114.0 152.0 190.0 228.0 266.0 304.0 342.o i 2 3 4 5 6 7 8 9 |
"7-3 156.4 195.5 234.6 273.7 312.8 35L9 388 38.8 77.6 "6.4 155.2 194.0 232.8 271.6 3io.4 349-2 385 38.5 77-0 "5-5 IS4.° 192.5 231.0 269.5 308.0 346.5 382 38.2 76.4 "4.6 152.8 191.0 229.2 267.4 305.6 343.8 379 37.9 75.8 "3.7 irfi.6 189.5 227.4 265.3 303.2 34LI 377 37.7 75.4 "3.1 150.8 188.5 226.2 263.9 301.6 339.3 |
117.0 156.0 i95.o 234.o 273.o 312.0 35i.o 387 38.7 77.4 116.1 154.8 193.5 232.2 270.9 309.6 348.3 384 38.4 76.8 "5-2 153.6 192.0 230.4 268.8 307.2 345.6 381 38.1 76.2 "4.3 152.4 190.5 228.6 266.7 304.8 342.9 378 37.3 75.6 "3.4 151.2 189.0 226.8 264.6 . 302.4 340.2 |
||
7141 046 1048 4952 8852 047 2749 6642 048 0532 4418 8301 |
753i H38 5342 9242 3138 7031 0921 4806 8689 |
7922 1829 5732 9632 3528 7420 1309 5195 9077 |
8313 2219 6122 0021 3917 7809 1698 5583 9465 |
8704 2610 6512 0411 4306 8198 2087 5972 9853 |
9095 3000 6902 0801 4696 8587 2475 6360 0241 |
9485 339i 7292 Tigo 5085 8976 2864 6748 0629 |
9876 378i 7682 1580 5474 9365 3253 7136 1017 |
0267 4171 8072 1970 5864 9754 3641 752? T403" |
0657 456i 8462 2359 6253 3i43 4030 7913 1792 |
||||
049 2180 |
2568 |
2956 |
3343 |
3731 |
4119 |
4506 |
4894 |
5281 |
5669 |
||||
6056 9929 0503798 7663 051 1525 5381 9239 0523091 6939 |
6444 0316 4184 8049 1911 5770 9624 3476 7324 |
6831 0703 4571 8436 2297 6i55 0010 3861 7709 |
7218 Togo 4958 8822 2683 6541 0*395 4246 8093 |
7606 T477 5344 9208 3069 6926 0780 4631 8478 |
7993 1863 5731 9591 3455 7312 Ti66 5016 8862 |
8380 2250 6117 998i 3841 7697 T55I 5400 9247 |
8767 2637 6504 0367 4227 8083 1936 5785 9631 |
9154 3024 6890 0753 4612 8468 2321 6170 0016 |
9541 34ii 7277 TI39 4998 8854 2706 655? 0400 |
||||
053 0784 |
1169 |
1553 |
1937 |
2321 |
2706 |
3090 |
3474 |
T O - O 355° |
4242 |
||||
4626 8464 054 2299 6131 9959 055 3783 760^ 056 1423 5237 |
5010 8848 2682 6514 0341 4166 7987 1804 5619 |
5394 9232 3066 6896 0724 4548 8369 2186 6000 |
5778 9615 3449 7279 Tio6 4930 8750 2567 6381 |
6162 9999 3832 7662 T489 5312 9132 2949 6762 |
6546 0382 4215 8045 1871 5694 95H 3330 7H3 |
6929 0766 4598 8428 2254 6077 9896 3712 7524 |
73 1 3 1149 4981 8811 2636 6459 0278 4093 7905 |
7697 T532 536^ 9193 3019 6841 0659 447b 8287 |
8081 1916 5748 9576 3401 7223 "1041 4856 8668 |
3 4 5 6 7 8 9 i 2 3 4 1 7 8 9 |
|||
9049 |
9429 9810 |
0191 |
0572 |
0953 |
T334 |
1714 |
2095 |
2476 |
|||||
0572856 6661 058 0462 4260 805^ 059 1846 5634 9419 0603200 |
3237 7041 0842 4640 8434 2225 6013 9797 3578 |
3618 7422 1222 5019 88I3 2604 6391 0175 3956 |
3998 7802 1602 5399 9193 2983 6770 0554 4334 |
4379 8182 1982 5778 9572 3362 7148 0932 4712 |
4759 8562 2362 6158 995 1 3741 7527 1310 5090 |
5HO 8942 2741 6537 0330 4119 7905 T688 5468 |
5520 9322 3121 6917 0709 4498 8284 2066 5845! |
5900 9702 3501 7296 To88' 4877 8662 5444 6223 |
6281 0082 3881 7676 T467 5256 9041 2822 6601 |
||||
1150 |
6978 |
7356 |
7734 |
Sin |
8489 |
8866 9244 |
9621 |
9999 |
0376 |
||||
N. |
0 |
1 |
2 3 |
4 |
5 |
6 |
7 |
8 1 9 |
P. P. |
||||
11000"= 3° 3' 20" 1100"= o°i8'2o" S. =4.685 5728 i T. =4.685 5789 8 moo = 350 mo = o 18 30 5727 7 5790 6 1 1200 = 3 6 40 1 120 = o 18 40 5727 3 5791 4 11300 = 3 8 20 1130 = o 18 50 5726 9 5792 i 11400 = 3 10 o 1140 = o 19 o 5726 6 5792 9 |
1150 — 1200
N. |
0 12 3 4 |
5 6 ! 7 8 9 |
P. P. |
||||||||
1150 51 S2 53 54 55 56 57 58 59 1160 61 62 63 64 65 66 67 68 69 1170 |
060697817356:7734 |
8111 8489 |
8866 |
9244 |
9621 |
9999 |
0376 |
i •2 3 4 S 6 8 9 i 3 4 | a g i 2 3 4 5 6 S 9 i 2 3 4 5 6 7 S 9 I 2 3 4 S 6 7 8 9 i 2 3 S 6 S 9 |
378 37.8 75.6 H3.4 151.2 189.0 226.8 264.6 302.4 340.2 375 37.5 75.Q 112.5 150.0 187.5 225.0 262.5 300.0 337-5 372 37.2 74.4 in. 6 148.8 186.0 223.2 260.4 297.6 334-8 369 36.9 73-8 110.7 147.6 184.5 221.4 258.3 295.2 332.1 366 36.6 73.2 109.8 146.4 183.0 219.6 256.2 292.8 329.4 363 36.3 72.6 108.9 145.2 181.5 217.8 254.1 290.4 326.7 |
377 37.7 75.4 113.1 150.8 188.5 226.2 263.9 301.6 339-3 374 37.4 74.8 112. 2 149.6 187.0 224.4 261.8 299.2 336.6 371 37-1 74.2 in. 3 148.4 185.5 222.6 259.7 296.8 333-9 368 36.8 73.6 no. 4 H7.2 184.0 220.8 257-6 294.4 331.2 365 36.5 73.0 109.5 146.0 182.5 219.0 255.5 292.0 328.5 362 36.2 72.4 108.6 144.8 181.0 217.2 253.4 289.6 325.8 |
376 37.6 75.2 1 12.8 150.4 188.0 225.6 263.2 300.8 338.4 373 37.3 74.6 111.9 149.2 186.5 223.8 261.1 298.4 335-7 370 37.o 74.o III.O 148.0 185.0 222.0 259.0 296.0 333-0 367 36.7 73.4 no i 146.8 1830 220.2 256.9 293.6 330.3 364 36.4 72.8 109.2 145.6 182.0 218.4 254.8 291.2 327.6 361 36.1 72.2 108.3 144.4 180.5 216.6 252.7 288.8 324.9 |
061 0753 452? 8293 062 2058 5820 9578 063 3334 7086 0640834 |
1131 4902 8670 2434 6196 9954 3709 7461 1209 |
1508 5279 9046 28ll 6572 0330 4084 7836 1584 |
1885 5656 9423 3187 6948 °7°5 4460 8211 1958 |
2262 6032 9799 3563 7324 To8i 483^ 8585 2333 |
2639 6409 0176 3939 7699 H56 5210 8960 2708 |
3017 6786 0552 43i6 8075 T832 5585 9335 3082 |
3394 7163 0929 4692 8451 2207 5960 9710 3457 |
3771 7540 1305 5068 8827 2583 6335 008^ 3831 |
4148 7916 1682 5444 9203 2958 6711 0460 4205 |
||
4580 |
4954 1 5329 |
5703 |
6077 |
6451 |
6826 |
7200 |
7574 |
7948 |
|||
8322 065 2061 5797 9530 0663259 6986 067 0709 4428 8i45 |
8696 2435 6171 9903 3632 7358 1081 4800 8517 |
9070 2809 6544 S276 400^ 7730 H53 5172 8888 |
9444 3182 6917 0649 4377 8103 182^ 5544 9259 |
9818 3556 7291 T022 4750 8475 2197 5915 9631 |
0~I92 3930 7664 T39S 5123 8847 2569 6287 OOO2 |
0566 4303 8037 1768 5495 9220 2941 6659 0374 |
0940 4677 8410 2141 5868 9592 3313 7030 0/43 |
T3H 5050 8784 2514 6241 9964 368^ 7402 Tn6 |
T688 5424 9157 2886 6613 0336 4057 7774 1487 |
||
068 1859 |
2230 |
2601 |
2972 |
3343 |
37H |4085| 4456 |
4827 |
5198 |
||||
7i 72 73 74 75 76 77 78 79 |
5569 9276 069 2980 6681 070 0379 40/3 7/61 071 H53 5138 |
5940 9647 3350 705i 0748 4442 8i34 1822 5506 |
6311 0017 3721 7421 1118 4812 8503 2190 58/S |
6681 0388 4091 7791 1487 5181 8871 2559 6243 |
7052 0758 4461 8160 1857 5550 9240 2927 6611 |
7423 1129 4831 8530 2226 5919 9609 3296 6979 |
7794 1499 5201 8900 2596 6288 9978 3664 7348 |
8164 1869 5571 9270 2965 6658 0347 4033 7716 |
853? 2240 5941 9639 3335 7027 0715 4401 8084 |
8906 2610 6311 0009 3704 7396 1084 4770 8452 |
|
1180 |
8820 |
9188 |
9556 |
9924 |
0292 |
0660 T028 |
T396 |
T/63 |
2i3V |
||
81 82 83 84 85 86 8/ 88 89 |
072 2499 617^ 9847 0733517 7184 074 0847 4507 8164 075 1819 |
2867 6542 0213- 3884 755° 1213 4873 8530 2184 |
3234 6910 0582 4251 7916 1579 5239 8895 2549 |
3602 7277 0949 4617 8283 1945 5605 9261 2914 |
3970 7644 1316 4984 8649 2311 5970 9626 3279 |
4337 Son T683 535i 9016 2677 6336 9992 3644 |
4701 8379 2050 5717 9382 3043 6702 0357 4010 |
5072 8746 2416 6084 9748 3409 7068 0723 437^ |
5440 9H3 2783 6450 0114 3775 7433 To88 4740 |
5807 9480 3*50 6817 0481 4141 7799 H53 5105 |
|
1190 |
54/0 |
i- Q-»~ D°03 |
6199 |
6564 6929 |
7294 |
7659! 8024 8388 |
8/53 |
||||
91 92 93 94 95 96 97 98 99 1200 |
9118 076 2763 6404 0770043 3679 7312 078 0942 4568. 8192 |
9482 3127 6768 040/ 4042 7675 1304 4931 8554 |
9847 3491 7*32 0771 4406 8038 1667 5293 8916 |
02 1 1 3855 7496 H34 4769 8401 2030 5656 9278 |
o.S/6 4220 7860 1498 5133 8764 2393 6018 9640 |
0940 4584 8224 1862 5496 9127 2/55 6380 Qoo3 |
130^ 4948' 8588 2225 5859 9490 3118 6743 0365 |
1669 5312 8952 2589 6222 9853 348o 7105 0727 |
2034 5676 93i6 2952 6585 0216 3843 7467 1089 |
2398 6040 9680 33i6 6949 0579 4206 7830 "1451 |
|
079 1812 |
2174 |
2536 2898 3260 |
3622 |
3983 4345 4707 |
5068 |
||||||
N. |
0 1234. |
5 6 7 8,9 |
P. P. |
||||||||
11500"= 3°ii'4o" 1150"= o°i9'ro" S. =4.685 5726 2 T. =4.685 5793 7 11600 = 3 13 20 1160 = o 19 20 5725 8 5794 5 11700 = 3 15 o 1170 = o 19 30 5725 4 5795 2 11800 = 3 16 40 1180 = o 19 40 5725 ° 5796 ° 11900 = 3 18 20 1190 = o 19 50 5724 6 5796 9 |
1200 — 1250
N. |
0 | 1 |
234 |
567 |
8 | 9 |
P. P. |
|||||||||
1200 |
079 1812 |
2174 |
2536 2898 |
3260 |
3622 |
3983 |
4345 |
4707 |
5068 |
|||||
OI 02 |
5430 9045 |
5792 9406 |
6i53 9767 |
0128 |
6876 0490 |
7238 0851 |
7599 T2I2 |
7961 T573 |
8322 |
18683 2295 |
362 36.2 |
361 ,5 T |
360 |
|
03 |
080 2656 |
3017 |
3378 |
3739 |
4100 |
4461 |
4822 |
5183 |
5543 |
5904 |
2 |
72.4 |
o^.1 72.2 |
72.0 |
04 |
626^ |
6626 |
6986 |
7347 |
7707 |
8068 |
8429 |
8789 |
9150 |
95io |
3 4 |
108.6 144,8 |
108.3 144.4 |
108.0 144.0 |
05 |
9870 |
0231 |
0591 |
0952 |
T3I2 |
1672 |
2O32 |
2393 |
2753 |
3113 |
5 |
181.0 |
180.5 |
180.0 |
06 |
081 3473 |
3833 |
4193 |
4553 |
4913 |
5273 |
5633 |
5993 |
6353 |
6713 |
6 7 |
217.2 253.4 |
216.6 252.7 |
216.0, 252.0 |
07 |
7073 |
7432 |
7792 |
8152 |
8512 |
8871 |
9231 |
9591 |
9950 |
0310 |
8 Q |
289.6 •>•>? 8 |
288.8 |
288.0 |
08 |
082 0669 |
1029 |
1388 |
1748 |
2107 |
2467 |
2826 |
3185 |
3541 |
3904 |
y j~j»v o*-*t»y IO^T-^ |
|||
09 |
4263 |
4622 |
4981 |
534i |
5700 |
6059 |
6418 |
6777 |
7136 |
749^ |
||||
1210 |
7854 |
8213 |
857i |
8930 |
9289 |
9648 |
0007 |
0365 |
0724 |
1083 |
359 |
358 ic 8 |
357 |
|
ii |
083 1441 |
1800 |
2159 |
2517 |
2876 |
3234 |
3593 |
3951 |
4309 |
4668 |
2 |
35-S 7i.8 |
35-° 71.6 |
35-7 7L4 |
12 |
5026 |
538? |
5743 |
6101 |
6459 |
6817 |
7176 |
7534 |
7892 |
8250 |
3 |
107.7 |
107.4 |
107.1 |
13 |
8608 |
8966 |
9324 |
9682 |
0040 |
0398 |
0756 |
1114 |
1471 |
1829 |
4 5 |
*43«^ 179.5 |
r43.2 179.0 |
i78"s |
H |
0842187 |
254^ |
2902 |
3260 |
3618 |
3975 |
4333 |
4690 |
5048 |
5405 |
6 7 |
215.4 251.3 |
214.8 250.6 |
214.2 249.9 |
15 |
5763 |
6120 |
6478 |
6831 |
7192 |
7550 |
7907 |
8264 |
8621 |
8979 |
8 |
287.2 |
286.4 |
285.6 |
16 |
9336 |
9693 |
0050 |
0407 |
0764 |
TI2I |
T478 |
T835 |
2192 |
2549 |
9 |
323.1 |
322.2 |
321.3 |
17 |
085 2906 |
3263 |
3619 |
3976 |
4333 |
4690 |
5046 |
5403 |
5760 |
6116 |
||||
18 |
6473 |
6829 |
7186 |
7542 |
7899 |
8255 |
8612 |
8968 |
9324 |
9681 |
356 |
355 |
354 |
|
19 |
086 0037 |
0393 |
0750 |
1106 |
1462 |
1818 |
2174 |
2530 |
2886 |
3242 |
i |
35.6 7T O |
35-5 |
35.4 70 8 |
1220 |
3598 |
3954 |
43io |
4666 |
5022 |
5378 |
5734 |
6089 |
6445 |
6801 |
3 |
*•** 106.8 |
71.0 106.5 |
106.2 |
21 |
7157 |
7512 |
7868 |
8224 |
8579 |
893?" |
9290 |
9646 |
0001 |
3357 |
4 S |
142.4 178.0 |
177.5 |
177.0 |
22 23 |
0870712 426J |
1067 4620 |
1423 497S |
1778 5330 |
2133 5681 |
2489 6040 |
2844 6395 |
3199 6750 |
3554 7104 |
3909 7459 |
6 |
213.6 249.2 284.8 |
213.0 248.5 284.0 |
212.4 247.8 283.2 |
24 |
7814 |
8169 |
8524 |
8878 |
9233 |
9588 |
9943 |
0297 |
0652 |
Too6 |
9 |
320.4 |
319.5 |
318.6 |
25 |
088 1361 |
1715 |
2070 |
2424 |
2779 |
3133 |
3488 |
3842 |
4196 |
4550 |
||||
26 |
4901 |
5259 |
5613 |
5967 |
6321 |
6676 |
7030 |
7384 |
7738 |
8092 |
353 |
352 |
351 |
|
27 28 |
8446 089 1984 |
8800 2337 |
9153 2691 |
9507 304' |
9861 3398 |
0215 3752 |
3569 4105 |
0923 4459 |
7276 4812 |
1630 5165 |
i 2 3 |
35.3 70.6 I05-9 |
35.2 7°.4 105.6 |
35. ! 70.2 I05-3 |
29 |
5519 |
5872 |
6226 |
6579 |
6932 |
7285 |
7639 |
7992 |
8345 |
8698 |
4 |
141.2 |
140.8 |
140.4 T*7C C |
1230 |
9051 |
9404 |
9757 |
OIIO |
0463 |
0816 |
1169 |
1522 |
T875 |
2228 |
5 6 |
17^.5 2II.8 |
211. 2 |
17o«5 210.6 |
•71 |
090 2^81 |
•7n*2 7 |
•2-?8fi |
•5 f\^ n |
A f\r\n |
co/i n |
r* A r\^ |
C7Cf |
7 3 |
247.* |
24O.4 |
2o^'g |
||
J A 32 |
6107 |
•^766 6460 |
^zoo 6812 |
3°39 7164 |
3991 75*7 |
4344 7869 |
4097 8222 |
ou^y 8574 |
:»'tu-i 8926 |
D/ 3D 9279 |
9 |
317.7 |
316.8 |
315.9 |
33 |
9631 |
9983 |
5335 |
0687 |
1039 |
1392 |
1744 |
2096 |
2448 |
2800 |
||||
34 |
0913152 |
3504 |
3855 |
4207 |
4559 |
490 |
5263 |
5614 |
5966 |
6318 |
350 |
349 |
348 |
|
35 |
6670 |
7021 |
7373 |
7724 |
8076 |
8427 |
8779 |
9130 |
9482 |
9833 |
i |
35.0 |
34.9 |
34.8 |
36 |
0920183" |
0536 |
0887 |
1239 |
1590 |
1941 |
2292 |
2644 |
2991 |
3346 |
2 3 |
70.0 105.0 |
69.8 104.7 |
69.6 104.4 |
37 |
3697 |
4048 |
4399 |
4750 |
5101 |
5452 |
5803 |
6154 |
6505 |
6856 |
4 |
140.0 |
139.6 |
139.2 |
38 |
7206 |
7557 |
7908 |
8259 |
8609 |
8960 |
93H |
9661 |
0012 |
S363 |
5 6 |
210.0 |
*74«5 209.4 |
208.8 |
39 |
0930713 |
1064 |
1414 |
1764 |
2IIJ |
2465 |
2816 |
3166 |
3516 |
3867 |
7 g |
245.0 |
244.3 |
243.6 278 4 |
1240 |
4217 |
4567 |
4917 |
5267 |
56l8 |
5968 |
6318 |
6668 |
7018 |
7368 |
9 |
315.0 |
279*2 314.1 |
*i/°.T1 313.2 |
41 |
7718 |
8068 |
8418 |
8768 |
9117 |
9467 |
9817 |
0167 |
5517 |
0866 |
||||
42 |
094 1216 |
1566 |
1915 |
226^ |
2614 |
2964 |
3313 |
3663 |
4012 |
4362 |
347 |
|||
43 |
47 1 1 |
5061 |
5410 |
5759 |
6109 |
6458 |
6807 |
7156 |
7506 |
7851 |
i |
34.7 |
||
- 44 |
8204 |
8553 |
8902 |
9251 |
9600 |
9949 |
0298 |
0647 |
0996 |
T345 |
2 3 |
69.4 104.1 |
||
45 |
095 1694 |
2042 |
2391 |
2740 |
3089 |
3437 |
3786 |
4131 |
4483 |
4832 |
4 |
138.8 |
||
46 |
5180 |
5529 |
5877 |
6226 |
6574 |
6923 |
7271 |
7620 |
7968 |
8316 |
5 6 |
173.5 208.2 |
||
47 48 |
8665 0962146 |
9013 2494 |
936i 2842 |
9709 3190 |
0057 3538 |
0406 |
0754 4233 |
TI02 4581 |
T45Q 4929 |
1798 5277 |
7 8 9 |
242.9 277.6 312.3 |
||
49 |
5624 |
5972 |
6320 |
6667 |
7015 |
7363 |
7710 |
8058 |
8405 |
8753 |
||||
1250 |
9100 |
9448 |
9791 |
0142 |
0490 |
0837 |
1184 |
T53I |
T879 |
2226 |
||||
N. |
0 |
1 |
234 |
5 |
6 |
rj |
8 |
9 |
P. P. |
|||||
12000"= 3°20' 0" 1200"= 0°20' o" S. |
= 4.685 5724 2 T. =4.685 5797 7 |
|||||||||||||
12100 = 3 21 40 1210 = o 20 10 " 5723 8 5798 5 |
||||||||||||||
12200 = 3 23 20 1220 = o 2o 20 5723 3 5799 3 |
||||||||||||||
12300 = 3 25 o 1230 = o 20 30 5722 9 5800 i |
||||||||||||||
12400 = 3 26 40 1240 = o 20 40 5722 5 5801 o |
10
1250 — 1300
X. |
0 |
1 -2 314 |
5 <3 ; 7 8 j 9 |
1 |
. P. |
|||||||||
1250 |
096 9100; 9448 9795 0142 0490 |
0837 1184! 1531 T879 2226 |
||||||||||||
5* 53 |
097 2573 6043 |
2920 6390 9857 |
3267 6737 0204 |
3614 3962 7084 7431 0550 0897 |
4309 4656 7777 8124 1243 1590 |
5003 8471 T936 |
5349 ! 5696 881719164 2283 2629 |
i 2 |
348 | 347 34.8 34.7 69.6 69.4 |
346 34.6 69.2 |
||||
54 |
098 2975 |
3322 |
3668 |
4014 4360 |
4707 5053 |
5399 |
5745 6091 |
4 |
104.4 |
104.1 138.8 |
103.8 138.4 |
|||
55 56 |
6437 9896 |
6783 0242 |
7129 j 7475 7821 0588 0934 1279 |
8167 1625- |
8513 T97I |
8859 2316 |
9203 9551 2662 3007 |
5 174.0 I73o!l73.° 6 208.8 2o8.2J207,6 7 243.61242.9 242.2 |
||||||
57 58 |
099 3353 6806 |
3698 7152 |
4044 4389 4735 7497 7842 8187 |
5080 5425 8532! 8877 |
5771 9222 |
6116 9567 |
6461 9912 |
8 g |
278.4 |
277.6 276.8 |
||||
59 |
1000257 |
0602 |
0947 |
129211637 |
198212327 |
2671 3016 3361 |
||||||||
1260 |
3705 |
4050 |
439? |
4739 ' 5084 |
5429 i 5773 |6n8 6462 |
6806 |
345 |
3441343 3 A A.I *» j -» |
||||||
6i |
7151 |
7495 |
7840 |
8184:8528 |
8873 |
9217 |
9561 |
9905 0249 |
2 |
69.0 |
OT'4 68.8 |
JtO 68.6 |
||
62 63 |
101 0594 4034 |
0938 4377 |
1282 4721 |
1626 1970 5063 5409 |
23H 5752 |
2658 6096 |
3002 6440 |
3346 6784 |
3690 7127 |
3 4 5 |
103.5 103.2 138.01137.6 I72.5JI?2.0 |
102.9 137.2 I7L5 |
||
64 |
7471 |
7814 |
8158 |
8501 8843 |
9188 |
9532 9875 |
0219 0562 |
6 7 |
207.0 24L5 |
240.8 |
240.1 |
|||
65 |
IO2 0905 |
1249 |
1592 |
193512278 |
2621 |
2965 |
3308 |
3651 |
3994 |
8 |
276.0 |
275.2 |
274.4 |
|
66 |
4337 |
4680 |
5023 |
5366(5709 |
6052 |
6738 |
7081 |
7423 |
9 310.51309.6:308.7 |
|||||
67 68 |
7766 103 1193 |
8109 1535 |
8452 1877 |
8794J9I37 2220! 2562 |
9480 2905- |
9822 3247 |
0165" 3589 |
0507 3932 |
0850 4274 |
342 |
341 |
340 |
||
69 |
4616 |
4958 5301 |
5643 1 598? |
6327 |
6669 |
7011 |
7353 |
7695 |
i 2 |
34.2 |
34.i 68.2 |
34.o 68.0 |
||
1270 |
8037 |
8379 |
8721 |
9063 940^ |
9747 |
0089 | 0430 |
0772 |
TII4 |
3 |
102.6 136 £ |
102.3 |
102.0 |
||
/i |
104 1456 |
1797 |
2139 |
2480 |
2822 |
3164 |
3505 3847 |
4188 |
4530 |
5 |
171.0 |
136.4 170.5 |
170.0 |
|
72 |
4871 |
5213 |
5554 |
5895 |
6237 |
6578 |
6919 |
7260 |
7602 |
7943 |
0 |
205.2 |
204.6 n-S ~ |
204.0 |
73 |
8284 |
8625 |
8966 |
9307 |
9648 |
9989 |
0331 |
0671 |
TOI2 |
T353 |
7 *-3y-t •'O"./ 8 273.6 272.8 |
272.0 |
||
74 |
105 1694 |
2035 |
2376 |
2717 |
3058 |
3398 |
3739 |
4080 |
4421 |
4761 |
9,307.8(306.9 |
306.0 |
||
75 |
5102 |
5442 |
5783 |
6124 |
6464 |
6805 |
7H5 |
7486 |
7826 |
8166 |
||||
76 |
8507 |
8847 |
9187 |
9528 |
9868 |
0208 |
0548 |
0889 |
1229 |
T569 |
339 |
3381337 |
||
77 |
106 1909 |
2249 |
2589 |
2929 |
3269 |
3609 |
3949 |
4289 |
4629 |
4969 |
i |
33.9 £.- Q |
33.8 |
33.7 |
78 |
5309 |
5648 |
5988 |
6*28 |
6668 |
7°°7 |
7^47 |
7687 |
8026 |
8366 |
O7.O |
7- |
||
79 |
8705 |
9041 |
9385 9724 0063 |
0403 0742 |
To82 |
T42I |
T76o |
4 |
135.6 169.5 |
i35.2ii34.8 160,0 T^9 *• |
||||
1280 |
107 2IOO |
2439 2778 |
3H7 3457 |
3796 |
4I3b |
4474 4813 |
5152 |
6 |
203.4 |
202.8 236 6 |
2O2. 2 |
|||
81 |
5491 |
5830)6169 |
6508 I 6847 |
7186 |
752? |
7864 | 8203 |
8541 |
8 |
237.3 271.2 |
2/0.4 |
235.9 269.6 |
|||
82 |
8880 |
9219 9558 |
9896(0235 |
0574 |
0912 |
1251 1590 |
T928 |
91305.I |
304.2 |
303.3 |
||||
83 |
I08226/ |
2605 |
2944 |
3282 |
3620 |
3959 |
4297 |
4635 |
4974 |
5312 |
||||
84 |
5650 |
5988 |
6327 |
6665- |
7003 |
7341 |
7679 |
8017 |
89ft JD5 |
8693 |
336 |
335 |
334 |
|
85 |
9031 |
9369 |
9707 |
0045 |
0383 |
0721 |
TQ59 |
T396 |
T734 |
2072 |
i |
33.6 |
33.5 |
33.4 |
86 |
I0924IO |
2747 |
3085 |
3423 |
4098 |
4435 |
4773 |
5448 |
2 3 |
67.2 100.8 |
67.0 100.5 |
66.8 IOO.2 |
||
87 |
5785 |
6123 |
6460 |
6798 |
7135 |
7472 |
7810 |
8147 |
8484 |
8821 |
4 |
134.4 -/CO « |
i34.o |
133.6 ,£.— — |
88 |
9159 |
9496 |
9833 |
0170 |
0507 |
0844 |
Tl8l |
T5i8 |
T855 |
2192 |
5 AUO.U j.wy.3 xu/.vj 6 2OI.6;2OI.O,'2OO.4 |
|||
89 |
II02529 |
2866 |
3203 |
3540 |
38/7 |
4213 |
4550 |
4887 |
5224 |
5560 |
7 Q |
235.2 234.5 233.8 o^9 «!,-,£C ^ nt,- r. |
||
1290 |
5897 |
6234! 6570 |
6907 |
7244 |
758o |
7917 |
8253 |
8590 |
8926 |
91302.4 301.5 300.6 |
||||
91 |
9262 |
9599 |
9935 |
0272 |
0608 |
0944 |
T28o |
T6i7 |
^953 |
2289 |
||||
92 |
III 2625 |
2961 |
3297 |
3633 |
3969 |
4306 |
4642 |
4977 |
5313 |
5649 |
333 |
|||
93 |
5985 |
6321 |
6657 |
6993 |
7329 |
7664 |
8000 |
8336 |
8671 |
9007 |
I |
33-3 |
||
94 |
9343 |
9678 |
0014 |
03 ^f |
0685 |
T02I |
T356 1691 |
2027 |
2362 |
2 3 |
66.6 99.9 |
|||
95 |
112 2698 |
3333 |
3368 3704 |
4039 |
4374 |
4709 |
5045 |
538o 5715 |
4 |
133.2 |
||||
96 |
6050 |
6385 |
6720 |
7°55 7390 |
7725 8060 |
8395 |
8730 9065 |
5 6 |
166.* 199.8 |
|||||
97 |
9400 |
9735 |
0069 |
0404 0739 |
To/4 1408 |
1743 |
2078 |
2412 |
7 |
|||||
98 |
U32747 |
3081 3416 |
375i 4085 |
4420 |
4754 |
5088 |
5423 |
5757 |
9 |
299.7 |
||||
99 |
6092 6426 6760 |
7094 j 7429 |
7763 8097 8431 |
8765 9099 |
||||||||||
1300 |
9434 19768 0102 0436 0770 |
TI04 7437 T77I |
2105 2439 |
|||||||||||
N. |
0 1 ' : 2 " 3 4 |
5 6 7 |
8 9 |
P |
. P. |
|||||||||
12500"= 3C28' 20" 1250"= o°20' 50" S. =4.685 5722 i T. = 4.68.5 5801 |
8 |
|||||||||||||
12600 = 3 30 o 1260 = o 21 ~o 5721 7 |
5802 |
7 |
||||||||||||
12700 = 3 31 40 1270 = 0 21 10 5/21 2 |
5803 |
5 |
||||||||||||
12800 = 3 33 20 1280 = o 21 20 5720 8 |
5804 |
4 |
||||||||||||
'00 = 3 35 o 1200 = o 21 3., 57-0 4 |
5*05 |
3 |
n
1300 — 1350
N. |
0 |
1 |
2 | 3 |
4 |
5 |
6 |
7 |
8 |
9 |
P. P. |
|||
1300 OI 02 03 04 05 06 07 08 09 1310 ii 12 13 14 15 16 J7 18 19 1320 21 22 23 24 25 26 2/ 28 29 1330 31 32 33 34 35 36 37 38 39 1340 41 42 43 44 45 46 47 48 49 1350 |
1139434 |
9768 |
0102 |
0436 |
0770 |
1104 |
T437 |
T77I |
2105 |
2439 |
i 2 3 4 5 6 9 i 2 3 |
334 33.4 66.8 100.2 133.6 107.0 200.4 233.8 267.2 300.6 332 33.2 66.4 99-6 |
333 33.3 66.6 99>9 133.2 166.5 199.8 233.1 266.4 299.7 331 33.1 66.2 99-3 |
1142773 6110 9444 1152776 6105 9432 116 2756 6077 9396 |
3107 6443 9777 3109 6438 9764 3088 6409 9728 |
3441 6777 OIII 3442 6771 0097 3420 6741 0060 |
3774 7110 0444 377S 7103 0429 3753 7073 -0392 |
4108 7444 0777 4108 7436 0762 408^ 7405 0723 |
4442 7777 TIIO 4441 7769 1094 4417 7737 1055 |
4775 8111 1444 4774 8101 1427 4749 8069 T387 |
5109 8444 T777 5107 8434 T759 5081 8401 1718 |
5443 8777 2110 5439 8767 2091 5413 8733 2050 |
5776 9111 2443 5772 9099 2424 5745 9065 2381 |
||||
1172713 |
3044 |
3376 |
3707 |
4039 |
4370 |
4702 |
5033 |
5364 |
5696 |
||||
6027 9338 118 2647 5954 9258 H92559 5858 9154 1202448 |
6358 9669 2978 6284 9588 2889 6187 9484 2777 |
6689 0000 3309 6615 9918 3219 6517 9813 3106 |
7021 033i 3639 6945 0248 3549 6847 oi43 3436 |
7352 0662 3970 7276 0578 3879 7177 0472 3765 |
7683 0993 430i 7606 0909 4209 7506 0801 4094 |
8014 1324 4631 7936 1239 4539 7836 TI3I 4423 |
8345 T65I 4962 8267 T569 4868 8165 1460 4752 |
8676 1986 5293 8597 T899 5198 8495 T789 5081 |
9007 2316 5623 8927 2229 5528 882^ 2119 54io |
5 6 7 8 9 i 2 3 4 5 6 { 9 i 2 3 4 6 7 8 Q I 2 3 4 5 6 7 8 9 i 2 3 4 5 6 7 8 9 i 2 4 5 6 7 8 9 |
166.0 199.2 232.4 265.6 298.8 330 33.o 66.0 99.o 132.0 165,0 198.0 231.0 264.0 297.0 328 32.8 65.6 98.^ 131.2 164.0 196.8 229.6 262.4 295.2 326 32.6 65.2 97.8 I3°.4 163.0 195.6 228.2 260.8 293.4 324 3*2.4 64.8 97.2 I29;6 162.0 J94.4 226.8 259.2 291.6 322 32.2 64.4 96.6 128.8 161.0 193.2 225.4 257.6 289.8 |
165^5 198.6 23L7 264.8 297.9 329 32.9 65.8 98.7 131.6 164.5 197.4 230.3 263.2 296.1 327 32.7 65.4 98.1 130.8 163.5 196.2 228.9 261.6 294.3 325 32.5 |
|
5739 |
6068 |
6397 |
6726 |
7°55 |
7384 |
7713 |
8042 |
8371 |
8699 |
||||
9028 1212315 5598 8880 1222159 5435 8709 123 1981 5250 |
9357 2643 5927 9208 2487 5763 9036 2308 5577 |
9686 2972 625? 9536 2814 6090 9364 2635 5903 |
0014 3300 6583 9864 3142 6418 9691 2962 6230 |
0343 3628 6911 0192 3470 6745 0018 3289 6557 |
0672 3957 7239 0520 3797 7073 0345 3616 6883 |
TOGO 4285 7568 0848 4125 7400 0672 3942 7210 |
1329 4614 7896 1175 4453 7727 TOOO 4269 7537 |
T657 4942 8224 T503 4780 8051 1327 4596 7863 |
1986 5270 8552 1831 5108 8382 T654 4923 8190 |
||||
8516 |
8843 |
9169 |
9496 |
9822 |
0149 |
0475 |
0802 |
TI28 |
1454 |
||||
124 1781 5042 8301 1251558 4813 8063- 126 1314 456i 7806 |
2107 5368 8627 1884 5138 8390 i639 4886 8130 |
2433 5694 8953 2209 5463 8715 1964 5210 8454 |
2759 6020 9279 253S 5788 9040 2288 5531 8779 |
3086 6346 960^ 2860 6114 9361 2613 5859 9103 |
34i2 6672 9930 3186 6439 9690 2938 6184 9427 |
3738 6998 0256 35ii 6764 ooi^ 3263 6508 9751 |
4064 7324 0582 3837 7089 0339 3587 6833 0076 |
4390 7650 0907 4162 7414 0664 3912 7157 5400 |
4716 7976 T233 4487 7739 0989 4237 7481 0724 |
97.5 130.0 162.5 i95.o 227.5 260.0 292.5 323 32.3 64.6 96.9 129.2 161.5 193.8 226.1 258.4 290.7 321 32.1 64.2 96.3 128.4 160.5 192.6 224.7 256.8 288.9 |
|||
127 1048 |
1372 |
1696 |
2020 |
2344 |
2668 |
2992 |
33i6 |
3640 |
3964 |
||||
4288 7525 1280760 3993 7223 1290451 3676 6899 1300119 |
4612 7849 1083 43i6 7546 0773 3998 7221 0441 |
4935 8172 1407 4639 7869 1096 4321 7543 0763 |
5259 8496 1730 4962 8191 1418 4643 7865 1085 |
5583 8819 2053 5285 85H 1741 4965 8187 1407 |
5907 9H3 2377 =5608 8837 2064 5288 8510 1729 |
6230 9466 2700 5931 9160 2386 5610 8832 2051 |
6554 9790 3023, 6254 9483 2709 5932 9154 2372 |
6878 0113 3346 6577 9805 3031 6255 9476 2694 |
7202 0437 3670 6900 0128 3354 6577 9798 3016 |
||||
3338 |
3659 |
398i | 4303 |
4624 |
4946 15267 |
5589 |
5911 6232 |
|||||||
N. |
0 |
1 |
2 3 |
4 |
5 G |
1 8 |
9 |
P. P. |
|||||
13000"= 3°36'4o" 1300"= o°2i/40// S. = 4.685 5719 9 T. =4.685 5806 2 13100 = 3 38 20 1310 = o 21 50 5719 5 5807 i 13200 = 3 40 o 1320 — o 22 o 5719 o 5808 o 13300 = 3 41 40 1330 = o 22 10 5718 6 5808 9 13400 = 3 43 2£ 1340 = o 22 20 5718 I 5809 8 |
1350 — 1400
X. |
0 1234 |
5 ! G 7 i 8 0 |
P. P. |
||||||
1350 5i 52 53 54 55 56 57 58 59 1360 6i 62 63 64 65 66 6? 68 69 1370 71 72 73 74 75 76 77 78 79 1380 81 82 83 84 85 86 87 88 89 1390 91 92 93 94 95 96 97 98 99 1400 |
i303338|3659 398i 4303 4624 |
4946 5267 5589 |
59ii |
6232 |
j 3 4 5 6 ! i 2 3 4 7 8 9 ; 2 « ej 6 7 8 Q I 2 3 4 5 6 7 8 9 3 4 5 6 I 9 i 2 3 4 5 6 7 9 |
8221 32.2 64.4 96.6 128.8 161.0 193.2 225.4; 257.6 289.8 320 32.0 64.0 96.0 128.0 160.0 192.0 224.0 256.0 288.0 318 31.8 63.6 95.4 127.2 159.° 190.8 222.6 254.4 286.2 316 31.6 63.2 94.8 126.4 158.0 189.6 221.2 252.8 284.4 314 31.4 62.8 94.2 125.6 157.0 188.4 219.8 251.2 282.6 312 31.2 62.4 93-6 124.8 156.0 187.2 218.4 249.6 280.8 31 i 3 2 6 3 9. 4 12 5 15 6 18 7 21' 824; 91275 |
321 32.1 64.2 96.3 128.4 160.5 192.6 224.7 256.8 288.9 319 31.9 63.8 95-7 127.6 159.5 191-4 223.3 255.2 287.1 317 31.7 63.4 95.i 126.8 158.5 190.2 221.9 253.6- 285.3 315 3L5 63.0 94-5 126.0 157.5 189.0 220.5 252.O 283.5 313 3L3 62.6 93.9 X25.2 156.5 187.8 219.1 250.4 281.7 311 31.1 62.2 93.3 124.4 155.5 186.6 217.7 248.8 279.9 LO c.o J.O J.o f.° ;.° 5.o ".o S.o ).° |
||
6553 9767 131 2978 6187 9393 1322597 5798 8998 I332I95 |
6875 0088 3299 6507 9713 2917 6119 9317 2514 |
7196 0409 3620 6828 0034 3237 6439 9637 2834 |
7518 0730 394i 7H9 0354 3558 6758 9957 3153 |
7839 1052 4262 7469 0-675 3878 7078 (5277 3473 |
8161 T373 4583 7790 0995 4198 7398 0596 3792 |
8482 1694 4903 8111 1316 45i8 7718 0916 4112 |
8803 201^ 5224 8431 T636 4838 8038 T236 4431 |
9124 2336 5545 8752 T956 5158 8358 T555 4750 |
9446 2657 5866 9072 2277 5478 8678 T875 5°7° |
5389 |
5708 |
6028 |
6347 6666 |
6985 |
730^ |
7624 |
7943 | 8262 |
||
8581 1341771 4959 8144 135 1327 4507 7685 1360861 4034 |
8900 2090 5277 8462 1641 4821 8003 1178 4352 |
9219 2409 5596 8780 1963 5H3 8320 1496 4669 |
9538 2728 59H 9099 2281 546i 8638 1813 4986 |
9857 3046 6233 9417 2599 5779 8956 2131 5303 |
0176 3365 6551 9735 2917 6096 9273 2448 5620 |
0495 3684 6870 0054 3235 6414 9591 2765 5937 |
08I4 4003 7188 5372 3553 6732 9908 3083 6255 |
"33 4321 75°7 0690 3871 7050 0226 3400 6572 |
1452 4640 7825 Too8 4189 7367 0543 3717 6889 |
7206 |
7523 |
7840 |
8i57 |
8473 |
8790 |
9107 |
9424 | 9741 |
0058 |
|
1370375 3541 6705 9867 1383027 6184 9339 1392492 5643 |
0691 3858 7022 0183 3343. 6500 965F 2807 5958 |
1008 41/4 7338 0499 3659 68l6 9070 3122 6272 |
132! 4491 7654 0815 3974 7i3i 0285 3438 6587 |
1641 4807 7970 TI3I 4290 7447 0601 3753 6902 |
1958 5124 8287 T447 4606 7762 0916 4068 7217 |
2275 5440 8603 T763 4922 8078 1231 4383 7532 |
2591 5756 8919 2079 5237 8393 T547 4698 7847 |
2908 6073 9235 2"395 5553 8709 T862 5013 8161 |
322J 6389 9551 2711 5869 9024 2177 5328 8476 |
8791 |
9106 9420 Q/35 |
0050 |
0364 0679! 0993 1308 |
T622 |
|||||
1401937 5080 8222 141 1361 4498 7632 1420765" 3893 7022 |
2251 5391 8536 16/5 4811 7946 1078 4208 7335 |
2566 5709 8850 1988 5121 8259 1391 4520 7648 |
2880 6023 9164 2302 5438 8572 1704 4833 7960 |
3191 6337 9478 2616 5752 8885 2017 5H6 8273 |
3509 6651 9792 2930 6065 9199 2330 5459 8586 |
3823 6966 0106 3243 6379 9512 2643 5772 8898 |
4138 7280 0419 3557 6692 9825 2956 6084 9211 |
4452 7594 0733 3871 7006 0138 3269 6397 9523 |
4766 7908 1047 4184 7319 0451 3582 6710 9836 |
1430148 |
0460 |
0/73| 1085 |
1398 |
1710 |
2022 |
233J |
2647 |
2959 |
|
32/1 6392 95ii 1442628 5742 8854 145 1964 5072 8177 |
3584 6704 9823 2939 6053 9165 2271 5382 8488 |
3896 70l6 oi 31 3251 636^ 9476 2586 5693 8798 |
4208 7328 0446 3562 6676 9787 2897 6004 9108 |
4520 7640 3758 3874 6987 0098 3207 63H 9419 |
4832 7952 1070 4185 7298 0409 3518 6625 9729 |
5H4 8264 T38i 4497 7610 0720 3829 6935 0039 |
5456 8576 T693 4808 7921 1031 4140 7246 0350 |
5768 8888 200^ 5H9 8232 ^342 4450 7556 0660 |
6080 9199 2316 5431 8543 T653 4761 7867 0970 |
146 I280| 1591 1901 |22II |
2521 |
2831 3141 |
3451 |
376i |
4071 |
||||
N. |
0 ' 1 |
213 4 |
516 7 8 9 |
P. P. |
|||||
13500"= 3°45' o" 1350"= oc22'3o" S. = 4.685 5717 7 '^.=4.685 5810 7 13600 = 3 46 40 1360 = 0 22 40 5717 2 13700 = 3 48 20 1370 = o 22 50 57l6 7 58i2 5 13800 = 3 50 o 1380 = o 23 o 57i6 3 58i3 5 I390- = 3 5i 40 1390 = o 23 10 57*5 8 5814 4 |
1400 — 1450
N. |
0 |
1 2 |
3 |
4 |
5 |
6 |
1 |
8 |
9 |
P. I1. |
||
1400 01 02 03 04 05 06 07 08 09 1410 ii 12 13 . 14 15 16 17 18 19 1420 21 22 23 24 25 26 27 28 29 1430 31 32 33 34 35 36 37 38 39 1440 41 42. 43 44 45 46 47 48 49 1450 |
146 1280 |
i59i |
1901 |
2211 2521 |
2831 |
3Hi |
345i |
376i |
4071 |
i 2 3 4 i 7 8 9 i 2 3 4 i 7 8 9 i 2 3 4 5 6 7 8 9 i 2 3 4 S 6 7 8 Q I 2 3 4 5 6 7 8 9 i 2 3 4 5 6 7 8 9 |
311 31. i 62.2 93.3 124.4 155.5 186.6 217.7 248.8 279-9 309 30.9 61.8 92.7 123.6 154.5 185.4 216.3 247.2 278.1 3of 30.7 61.4 92.1 122.8 IS3-5 184.2 214.9 245.6 276.3 305 30.5 DI.O 91.5 I22.O 152.5 183.0 213.5 244.0 274.5 303 30.3 60,6 90.9 121. 2 I5I.5 181.8 212. 1 242.4 272.7 301 3°.i 60.2 90.3 1 20. 4 iSo.S 180.6 210.7 240.8 270.9 21 I 2( 2 5< 3 8c 4 lie 5 14$ 6 i7( 7 20C 823C 926c |
310 31.0 62.0 93.o 124.0 iSS.o 186.0 217.0 248.0 279.0 308 30.8 61.6 92.4 123.2 154.0 184.8 215.6 246.4 277.2 '306 30.6 61.2 91.8 122.4 153.0 183.6 214.2 244.8 275.4 304 3°.4 60.8 91.2 121. 6 152.0 182.4 212.8 243.2 273.6 302 30.2 6o.4 90.6 i2o;8 151.0 181.2 211. 4 241.6 271.8 300 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 >9 >.9 >.8 1-7 >.« ).5 ).4 ).3 ).^ ).i |
438i 7480 H70577 36/1 6763 9853 148 2941 6027 9110 |
4691 7790 0886 398o 7072 0162 3250 633? 9418 |
5001 8100 1196 4290 738i 0471 3558 6643 9726 |
5311 8409 1505 4599 7690 0780 3867 6952 003? |
5621 8719 1815 4908- 7999 1089 4175 7260 0343 |
5931 9029 2124 5217 8308 1397 4484 7569 0651 |
6241 9338 2434 5527 8617 1706 4793 7877 0959 |
655i 9648 2743 5836 8926 201? 5101 8185 T267 |
6861 9958 3052 614? 9235 2324 54io 8493 T575 |
7170 0267 3362 6454 9544 2632 57i8 8802 1883 |
|||
149 2191 |
2499 |
2807 |
3H5 |
3423 |
3731 |
4039 |
4347 |
4655 |
4962 |
|||
5270 8347 150 1422 4494 7564 151 0633 3699 6762 9824 |
5578 865? 1729 4801 7871 0939 400^ 7069 0130 |
5886 8962 2036 5108 8178 1246 43ii 7375 0436 |
6i93 9270 2344 5415 8485 1553 4618 7681 0742 |
6501 9577 2651 5722 8792 1859 4924 7987 1048 |
6809 9885 2958 6030 9099 2166 5231 8293 T354 |
7116 0192 3265 6337 9406 2472 5537 8600 T66o |
7424 0499 3573 6644 9712 2779 5843 8906 1966 |
7732 0807 3880 6951 0019 3085 6150 9212 2272 |
8039 1114 4187 7257 0326 3392 6456 95i8 2578 |
|||
^1522883 |
3189 |
3495 |
3801 |
4107 |
4412 |
4718 |
5024 |
5329 |
5635 |
|||
5941 8996 1532049 5100 8149 I54H95 4240 7282 1550322 |
6246 9301 2354 540? 8453 1500 4544 7586 0626 |
6552 9607 2659 57io 8758 1804 4848 7890 0930 |
6858 9912 2964 6015 9063 2109 5153 8i94 1234 |
7163 0217 3270 6320 9368 2413 5457 8498 1538 |
7469 0523 3571 662^ 9672 2718 576i 8802 1842 |
7774 0828 3880 6929 9977 3022 6065 9106 2145 |
8080 TI33 4i8? 7234 0281 3327 6370 9410 2449 |
8385 T439 4490 7539 0586 3631 6674 97H 2753 |
8691 1744 4791 7844 0891 3935 6978 0018 3057 |
|||
336o |
3664 |
3968 |
4271 |
4575 |
4879 |
5182 8217 1249 4280 7308 0334 3359 6381 9401 2418 |
5486 |
5789 |
6093 |
|||
6396 943Q 1562462 5492 8519 1 57 1 544 4568 7589 1580608 |
6700 9733 276? 5794 8822 1847 4870 7891 0910 |
7003 0037 3068 6097 9124 2149 5172 8193 1212 |
7307 0340 3371 6400 9427 2452 5474 8495 1513 |
7610 0643 3674 6703 9729 2754 5776 8797 1815 |
79i4 0946 3977 7006 0032 3056 6079 9099 2117 |
8520 T553 4583 7611 0637 3661 6683 9702 2720 |
8824 1856 4886 7914 0939 3963 6985 0004 3022 |
9127 2159 5189 8216 1242 4265 7287 0306 3323 |
||||
3625 |
3927 |
4228 |
4530 |
4831 |
5133 |
5434 |
5736 |
6037 |
6338 |
|||
6640 9653 159 2663 5672 8678 1 60 1683 4685 7686 161 0684 |
6941 9954 2964 5973 8979 1983 4985 7986 0984 |
7243 525? 3265 6273 9280 2284 5286 8285 1283 |
7544 0556 3566 6574 9580 2584 5586 8585 1583 |
7845 0857 3867 6875 9881 2884 5886 8885 1883 |
8146 1158 4168 7175 0181 3184 6186 9i85 2182 |
8448 H59 4469 7476 0481 3481 6486 948? 2482 |
8749 1760 4770 7777 0782 378? 6786 978? 2781 |
9050 2061 5070 8077 T082 4085 7086 0084 3081 |
935i 2362 5371 8378 T383 4385 7386 0384 338o |
|||
3680 |
3980 4279 |
4578 |
4878 |
5177 |
5477 |
5776 |
6075 |
637S |
||||
. |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
P. P. |
|
14000"= 3- 53' 20" 1400"= o°23/2o// S. = 4.685 5715 3 T. =4.685 5815 4 14100 = 3 55 o 1410 = o 23 30 5714 8 5816 3 14200 — 3 56 40 1420 = o 23 40 5714 4 5817 3 14300 = 3 58 20 1430 = o 23 50 5713 9 5818 2 14400 = 400 1440 = o 24 o 5713 4 5819 2 |
14
1450 — 1500
N. |
0 |
123 |
4 |
5 6 |
7 |
8 9 |
P. P. |
||||
1450 51 52 53 54 55 56 57 58 59 |
161 3680 |
3980 |
4279 4578 |
4878 |
5177 |
5477 |
5776 |
6075 637J |
300 30.0 60.0 90.0 120.0 I5O.O 180.0 210.0 240.0 270.0 298 29.8 59.6 89.4 119.2 149.0 178.8 208.6 238.4 268.2 296 =9.6 59-2 ss.s 118.4 148.0 177.6 207,2 236.8 266.4 294 29-4 58.8 88.2 117.6 I47.° 176.4 205.8 m 292 29.2 58.4 87.6 116.8 146.0 175.= 204.4 233.6: 262.8! 290 29.0 58.0 87.0 116.0 145.° 174.° 203.0 232.0 261.0 |
299 29.9 59.8 89.7 119.6 *49.5 179.4 209.3 239.2 269.1 297 *9-7 59.4 89.1 118.8 I4«.5 178.2 * 207.9 ' 237.6 267.3 i 29$ 2^o If 118.0 147.5- 17740 206.5 2T,6f 265 1? ! 293V sti 87.9 117.2 146.5 175.8. 205.1 234.4; 263.7 291 29.1 58.2 87.3 116.4 !43.5 174.6 203.7 232.8 261.9 289 28.9 57.8 86.7 115.6 144.5 173-4 202.5 231.2 jOO.I |
|
6674 9666 1622656 5644 8630 163 1614 4596 7575 1640553 |
6973 9965 2955 5943 8928 1912 4894 7873 0851 |
7273 0264 3254 6241 9227 2210 5192 8171 1148 |
75/2 0563 3553 6540 9525 2508 5490 8469 1446 |
7871 0862 3852 6839 9824 2807 5788 8767 !/43 |
8170 Ti6i 4150 7137 0122 3I03- 6086 9064 2041 |
8470 1460 4449 7436 0420 3403 6384 9362 2339 |
8769 T759 4748 7734 0719 3701 6682 9660 2636 |
9068 2058 5047 8033 1017 3999 6979 9958 2934 |
9367 2357 5345 8331 T3i5 4297 7277 0255 3231 |
i 2 3 4 5 6 7 8 9 |
|
1460 |
3529 |
3826 |
4123 |
4421 |
4718 |
5016 |
5313 |
5610 |
5908 |
6205" |
i 2 3 4 5 6 I 9 2 3 4 5 6 9 , \ 9 i 2 3 4 5 6 I 9 i 2 3 4 5 6 7 S 9 |
61 62 63 64 65 66 67 68 69 |
6502 9474 165 2443 54ii 83/6 166 1340 430i 7261 167 0218 |
6799 9771 2740 5707 8673 1636 4597 7556 05i4 |
7097 0068 3037 6004 8969 IQ22 |
7394 036! 3334 6301 9265 2228 |
7691 0662 3631 6597 9562 2^21 |
7988 0959 3927 6894 9858 2821 |
8285 T256 4224 7190 oi 5 1 3H7 6077 9035 1991 |
8582 T553 4521 7487 0451 3413 6373 933i 2287 |
8880 1850 4817 7783 0747 3709 6669 9627 2582 |
9177 2146 5H4 8080 TQ43 4005 696^ 9922 2878 |
|
4893 7852 0809 |
5189 8148 IIOJ |
5485 8444 1400 |
5781 S740 1696 |
||||||||
1470 |
3173 |
3469 I 3764 |
4060 |
435T |
4650 |
4946 |
5241 |
5536 |
5831 |
||
71 72 73 74 75 /6 77 78 79 |
6127 9078 168 2027 4975 7920 169 0864 38oj 6744 9682 |
6422 9373 2322 5269 8215 1158 4099 7038 9975 |
6717 9668 2617 5564 8509 1452 4393 7332 0269 |
7012 9963 2912 5859 8803 1746 4687 7626 0563 |
7308 0258 3207 6i53 9098 2040 498i 7920 0856 |
7603 0553 3501 6448 9392 2335 5273 8213 1150 |
7898 0848 3796 6742 9686 2629 5569 8507 T443 |
8i93 "43 4091 7037 9981 2923 5863 8801 T737 |
8488 T438 4386 7331 0275 3217 6i57 9094 2030 |
8783 T733 4680 7626 0569 3511 6450 9388 2324 |
|
1480 |
1702617 |
2911 |
3204 |
3497 |
3791 |
4084 |
4377 |
4671 |
4964 |
5-57 |
|
81 82 83 84 85 86 87 88 89 |
555i 8482 171 1412 4339 726^ 1720188 3110 6029 8947 |
5844 8775 1704 4632 7557 0480 3402 6321 9239 |
6i37 9068 1997 4924 7849 0773 3694 6613 9530 |
6430 936i 2290 5217 8142 1065" 3986 6905 9822 |
6723 9654 2583 5509 8434 1357 4278 7197 0113 |
7017 9947 2876 5802 8727 1649 457° 7488 0405 |
73io 0240 3168 6095 9019 1941 4862 7780 0697 |
7603 0533 346i 6387 93ii 2233 5154 8072 0988 |
7896 0826 3754 6680 9604 2526 5446 8364 T28o |
8189 TlIO 4046 6972 9896 28l8 5737 8655 T57i |
|
1490 |
173 1863 |
2154 |
2446 |
2737 3°2S |
3320 3611 |
3903 |
4194 |
4485 |
|||
91 92 93 94 95 96 97 98 99 1500 |
4776 7688 i/4 0598 3506 6412 93i6 1752218 5118 8016 |
5068 7979 0889 3797 6702 9606 2508 5408 8306 |
5359 8270 1180 4087 6993 9897 2798 5698 8596 |
5650 8561 H7I 4378 7283 0187 3088 5988 8885 |
594i 8852 1761 4669 7574 0477 13378 6278 J9I75 |
6233 9143 2052 4959 7864 0767 3668 6567 9465 |
6524 9434 2343 5250 815^ T057 3958 68v 9754 |
68iJ 9725 2634 5540 8441 T348 4248 7147 0044 |
7106 0016 292^ 5831 8735 1638 4538 7437 0333 |
7397 0307 3215 6121 9026 1928 4828 7727 0625 |
|
176 0913 |
I2O2 1492 I78l|2O7I |
2360 ! 2649 |
2939 |
^228 |
35i8 |
||||||
x |
0 1234 |
5678 |
9 |
P. R |
|||||||
1-4500"= 4°i'40" 1450"- 0^24' 10" S. =4-685 5712 9 T. =4-«>«!> sjjtzo -j 14600 = 4 3 20 1460 = o 24 20 5712 4 . 2g~n ~ 14700 = 450 1470 = o 24 30 ?g23 > 14800 = 4 6 40 1480 = o 24 40 ^82^ 2 . » - 4 8 20 1490 — o 24 50 57 i^ 9 — - |
1500 — 1550
N. |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
P P. |
||
1500 |
1760913 |
1202 |
1492 |
1781 |
2071 |
2360 |
2649 |
2939 3228 |
35i8 |
||||
OI |
3807 |
4096 |
4386 |
4675 |
4964 |
5253 |
5543 |
5832 |
6121 |
6410 |
|||
02 |
6699 |
6988 |
7278 |
7567 |
7856 |
8145" |
8434 |
8723 |
9012 |
9301 |
zyu |
as»y |
|
03 |
9590 |
9879 |
0168 |
0457 |
o"745 |
T034 |
T323 |
T6i2 |
1901 |
2190 |
i 2 |
29.0 |
28.9 57.8 |
04 |
1772478 |
2767 |
3056 |
3345 |
3633 |
3922 |
4211 |
4499 |
4788 |
5076 |
3 4 |
87!o 116.0 |
86.7 |