UC-NRLF

C 3 13fl

I ) \h^

LIBRARY

OF THK

UNIVERSITY OF CALIFORNIA

OIR'T OK ?

Class

mL

•x

Wl

i

X

NEW MANUAL

OF

LOGARITHMS.

NEW MANUAL

OF

LOGARITHMS

TO

SEVEN PLACES OF DECIMALS

EDITED

BY

DR. B R U H N S

DIRECTOR OF THE OBSERVATORY AND PROFESSOR OF ASTRONOMY AT LEIPZIG.

SECOND STEREOTYPE EDJTION

OF T

UNIVERSITY

01

BERNHARD TAUCHNITZ LEIPZIG 1878.

t;

IS 73

Astron. Dopt.

r e f a c e.

Kohler's Handbook of Logarithms , which has hitherto been published by Tauchnitz, and which will still be continued to be published by them, has always found a very favourable reception from the public both on account of its arrangement and its exactness. However Bremikerls^Edition of Y6^^ seven figure logarithms extended and improved well known and frequently used, and Schron's logarithmic tables are preferable for many elaborate astronomical calculations. Bremiker gives in the trigonometrical Tables the logarithms of the Sine and Tangent for the first 5 degrees to every second and the logarithms of the Sine, Tangent, Cotangent, Cosinus from to 45° (and therewith it is self-evident of the whole quadrant) for every 10 seconds; whilst Schron has added to the last an extensive Inter polation Table.

The publishers did not wish to be behindhand with their Hand book of logarithms and when they became aware that I was willing to undertake the necessary labour of preparing one they determined to pre serve Kohler's in its present form as it is obviously well adapted for many purposes and desired me to prepare an entirely new Manual, which I now lay before the reader and of which this is the principal arrangement. The logarithms of the numbers from I to 108000 as they are in Kohler have been reduced to the extent of from i to 100000 since the addition of the logarithms of the numbers from 100000 to 108000 does not appear to offer a sufficient advantage.

The logarithms of the first 6 degrees of the trigonometrical functions, Sine, Cosine, Tangent and Cotangent have been given to every second, with the addition of the differences and where the space would allow of it, of the proportional parts.

Such an arrangement has been desired in many quarters and will save the calculator much labour and waste of time spent in interpolation. This table makes an essential distinction between this and other logarithmic tables

VI Preface.

and as far as I know it is exceeded by none in completeness and facility of use.

The remaining 39 degrees of the trigonometrical functions are given to every 10 seconds, whilst in Kohler from the 9th degree they are only given to every minute.

As with these 3 Tables the work already consists of 38 sheets, we have omitted the Addition and Subtraction logarithms (Gauss's) which have been lately many times published. And we have also omitted the gonio- metrical and trigonometrical formulae contained in Kohler, as well as the other tables which though useful are not so frequently wanted; so that the present work with the exception of some few small additional Tables consists merely of the logarithms of numbers and of the trigonometrical logarithms.

The arrangement of the Tables is on a plan easily understood, not overladen with directions, printed with a clear distinct type and of undoubted correctness.

The final arrangement of the Tables is the result of much corre spondence with many eminent calculators and much thought has been bestowed upon it.

With regard to Table I., the first column which in Kohler contains the degrees and minutes contained in the adjacent number considered as seconds, is omitted and in its place, similar to what has been done by Bremiker and Schron, under the logarithms is a small table by which it is easily possible to change seconds into minutes and degrees.

In general we have adopted the form of Bremiker's table and just as he and Schron have expressed the logarithms of J~L, -—-^ under the notation S and T we have done the same, but we have placed these at the bottom of the Table and not as Kohler at the top. Further Bremiker is again also followed in this respect, that the successive numbers are given from o to 50 and from 50 to 100 (thus repeating the logarithms of the Numbers at the top and bottom of each page) instead of from o to 49 and from 50 to 99 as they stand in Kohler and Schron.

In order to find the numbers more readily, every tenth number is enclosed with horizontal lines as Bremiker has done, and a space left be tween the logarithms of every three numbers. The proportional parts are as in other tables; yet arranged again as in Bremiker, since they seem to me to be thus more readily found.

In the arrangement of the 2nd table, we have entered for the first 10 minutes (from o to 9 minutes) only the logarithms of the Sine, Cosine, Tangent, Cotangent together with the differences for every second for each single minute on one page.

In order to find the number required, more readily, in these 10 minutes we have seperated by a horizontal line every 5 seconds; so that the eye may

Preface. vn

more readily keep the line which it has taken, thus preventing uncertainty, and making the differences also, more readily distinguished. Proportional parts can only be given in these first i o minutes at large intervals of differ ences but these are taken successively smaller and smaller. Whenever there was space among the logarithms the multiples of smaller intervals have been added.

As after 10 minutes the differences of the logarithms of Sine, Tangent and Cotangent proceeding by seconds, consisted of four figures only, it was possible to bring two minutes on to every page , if the first two decimals of each of the logarithms could be placed over, at the decades of the seconds. In the single columns for the logarithms of the Sine, Tangent and Cotangent from 1 i' as far as 20' only the five last decimals and for the Cosine only the four last decimals have been inserted, since this has been found quite sufficient. The differences are given completely for every second to the Logarithms of the Sine, Tangent and Cotangent whilst this was not necessary for the logarithms of the Cosine. From 10' to 20' no pro portional parts could be given, for otherwise the page would have been much too broad and every calculator must therefore supply these for himself when wanted. In Bremiker's table of the first for every second, no proportional parts nor differences are given, while in Schron these logarithms themselves are entirely omitted.

After 20' the differences of the logarithms to every second consist only of three figures, and it was possible to separate 3 decimals instead of two, at every decade, by which means so much space was gained, that in the middle, at each minute, the seconds from o to 60 and from 60 to o could be repeated; yet all the proportional parts could not be given but only at intervals of 3, then of 2 and lastly of one unit.

As in the logarithms of numbers a stroke over the first figure of the decimals denotes, that the last decimal of the number standing at the pre ceding decade must be increased by a unit, while in the case where it must be diminished by a unit a small star * is inserted.

Table III. From up to 45° the trigonometrical functions are given for every 10 seconds, and the arrangement is as in Bremiker and Schron, except as to the succession of the particular functions. The repetition of the first 6 degrees in intervals of 10 seconds appears to be superfluous here Bremiker has repeated his first 5 degrees because in tables II. and III. all the functions are given and their succession is not changed.

The succession Sine, Cosine, Tangent, Cotangent is here advisedly chosen rather than the bad order Sine, Tangent, Cotangent and Cosine used by some recently, because the calculator solves most questions by the aid of the first form and, indeed, the logarithms of the Sine and Cosine here stand ing close together, are frequently wanted at the same time.

The symmetry which in the succession Sine, Tangent, Cotangent, Co sine from above from left to right, below from right to left occurring as it

VHI Preface.

does in all the old Tables we have given up. If we consider ourselves as passing on the course of a line, and we take only two functions, then we have the symmetry for these two existing; so that appears to me to be no disadvantage.

Since we frequently require only 6 decimals and are using tables with 7 places, if a 5 stand in the last place, it is doubtful whether this has been increased; in the whole of the three tables when this has been the case a mark is placed over the 7th decimal. In calculations therefore with six decimals when 5" occurs it is simply omitted. Hence for example the loga rithm to seven places of the number 83601 = 4,9222115 and the logarithm to six places of this number is 4,922211, whilst the 7 figure logarithm of the number 91752 = 4,9626155 the six figure logarithm of this number is, since the last 5 has no mark over it = 4,962616. The mark with all the last figures as introduced by Schron does not appear to me advantageous since after repeated experience on my own part and on that of other cal culators, these marks seldom come into use and the eye is fatigued by their number.

The opinion of many calculators has been obtained on the form of the type of the Tables. More than three fourths of them find the thick Egyptian type used by Kohler and Schron to be more irksome than the old English type used by Bremiker and others. Although perhaps the beauty of the printing is increased, if the figures, stand all in one line, as the Egyptian, yet the eye distinguishes single figures more readily, and an interchange of one for another is less to be feared, if they are as in the old English type partly above the line and partly below. The 3 and the 8 for example are dis tinguished by this means, since the 3 falls below considerably, but not the 8 ; 7 and i are readily distinguished and likewise 6 and 9. The type of the figure here used is admirable for its size, the figures of Bremiker's table admirable as they are, exciting many complaints on account of their small- ness. The size of the book is not much larger than Bremiker's, notwith standing the magnitude of the figures and the printers have made every exertion to use distinct and also beautiful type.

The magnitudes log -^~- = S, log -^- = T which are at the foot of the logarithms of the numbers in table I. , and go from i o to I o seconds are given for the sake of accuracy to 8 decimals in order to obtain greater certainty in the last decimal in the Interpolations. They run from o" to 46' 40 " and have a particular value for the determination of a small angle, since we can therewith reckon exactly the arcs to the trigonometrical functions of small angles even to the 3rd, 4th and 5th decimal of a second.

In the proportional parts we have generally given also the first decimal, so that in the Interpolation we may be certain to some tenths of the last decimal.

On page 186 we have given the multiple of the modulus of the natural system of logarithms, in order to convert Briggs logarithms into

Preface. IX

natural and the converse. On page 608 the arcs of the circle are expressed in parts of the radius; on page 609 the conversion of the degrees of the circle into time, hours, minutes and seconds and lastly on page 610 some Constants and the relations of the most frequently used measures of length to the metre are given.

The logarithms to the numbers to 7 places have been taken directly from Vega's "Thesaurus logarithmorum " to ten places and partly where the three last figures were 495 and 505, partly from 498 to 502 out of the loga rithms of prime numbers from i to 1 200 as they are printed in Callet's table, calculated anew and compared with the excellent tables of Kohler, Bremiker and Schron. No difference in the last place has been found from any of the known tables.

The Table II. containing the logarithms of the trigonometrical func tions sine, cosine, tangent, cotangent, have been obtained for every second in the following way ; by Dr. Low the logarithms of the sine and tangent in intervals partly of 320, partly of 256 seconds were calculated to 15 decimals and for the first four degrees for every 40 seconds, for the 5th and 6th degrees for every 32 seconds and interpolated to this number of decimal places, then again interpolated for every second to fewer decimals and finally reduced to 7 decimals. The logarithms of the cosine have been interpolated with 14 decimals for every second for all 6 degrees. For the sixth degree the loga rithms were taken of the sine for every second to 14 decimals and of the cosine for every second to 14 decimals, and from these were derived the logarithms of the tangents and cotangent, and then the whole reduced to 7 decimal places.

For the first 2 degrees an immediate comparison may be made, since they are contained to 10 decimals in Vega's "Thesaurus logarithmorum"; for the logarithms of the sine and tangent of the first 5 degrees can be compared with Bremiker's 7 figure table and lastly for all functions a com parison may be made with Taylor's. Where any difference was found the last decimal was directly calculated; in Bremiker's Edition of Vega's table to 7 places (51st ed.) we found in log tan 9' 59" only one error in the last decimal, whilst in Vega's Thesaurus and in Taylor (I had not Bagay* at my command) frequently differences of i and 2 units occurred in the last place.

The Table III. contains the logarithms of the trigonometrical functions for every 10 seconds taken from the Thesaurus of Vega and very carefully compared with other tables and eventually recalculated.

The examination of the logarithms has been made with the greatest precision and anxiety. They were first read by the printer: the second examination which consisted in reading them with Schron's and Bremiker's tables was made by Dr. Low and M. Leppig, the third examination by

* Bagay is to every Second of the Quadrant to 7 places, but there are no differences or proportional parts whatever.

X Preface.

Qu. Miiller and Richter, both examinations were superintended by myself, and I particularly examined the headings, the first decimals of the Sine, Cosine, Tangent and Cotangent, the differences, the accuracy of the pro portional parts, &c. A fourth examination was made by myself and Leppig with Vega's "Thesaurus logarithmorum" and Taylor's "Tables of loga rithms &c.", London 1792. A fifth examination was finally made throughout by M. Heineman. All the errors were most carefully corrected by the Printer. The fourth and fifth corrections were read from the stereotype plates and there were found only 2 errors in the logarithms of the numbers, in the logarithms of the trigonometrical functions only 1 5 , whence we may estimate the care with which the three first corrections had been made.

The publishers have omitted no trouble or cost, and hope that these tables will meet with a correspondingly favourable reception from the scien tific world.

Leipzig, August 1869.

Dr. C. Bruhns.

Introduction.

The following Theorems are indispensable for the use of logarithms.

They are:

log (A X B) = log A -f log B

log £ = log A log B

log Am = m log A

log fk = ± log A,

or at full length: the logarithm of a product is equal to the sum of the logarithms of the factors; the logarithm of a quotient is equal to the differ ence of the logarithms of the Dividend and of the Divisor, the logarithm of a power is equal to the product of the exponent into the logarithm of the basis, and the logarithm of the mth root of a number is equal to the loga rithm of the basis divided by the exponent m of the root.

§.2.

The logarithms given in these Tables are Briggs's logarithms whose basis, as is well known is 10. Therefore we have o = log of the number i i = log of the fraction -~-= 0,1

i= 10 —2= -^-=0,01

2 = » it IOO 3 =

3 = ff ff I00° 4 » it

&c. &c.

The remaining rational numbers that are not powers of 10 have ir rational logarithms, thus since 7241 <|QO t^ie ^°£ °^ 724I is eQU3^ to 3 H~ an irrational fraction 0,8597985 . . . ., the log of 0,07 <J°~I is equal to 2 -\- the irrational fraction 0,8450980.

The common or Briggs's logarithm of a number consists therefore in general of two parts; of a whole number called the characteristic and of a fractional part called the mantissa. The last are given in the Tables; for the characteristic belonging to every number we have the following rule derived from the table given above.

The characteristic of a power of 10 greater than one is equal to the number of the figures less one; the characteristic of a proper fraction is negative and if we convert it into a decimal fraction is equal to the number of noughts which precede the significant figures. The mantissae according to what is said above are always positive and agree with the characteristic or are contrary to it according as the characteristic is positive or negative.

Since we frequently want logarithms that are not immediately given in the Tables, that must be found by Interpolation the following Theorem

XII Introduction.

must be assumed: for a small interval, the difference of the arguments is pro portional to the difference of the function ; in the present case a logarithm.

§• 3- Table I.

Pages 2 to 5 inclusive contain the logarithms of the first Chiliad. The numbers are in the column N and the logarithms belonging to them will be found in the column headed Log, that is the mantissae or decimal part of the logarithm.

Pages 6 to 185 contain the logarithms of the numbers from 1000 to 100000.

Page 1 86 contains the multiples of M and of ~- for the conversion of Briggs's logarithms into natural logarithms and conversely.

At the foot of the Table we find the values of log -^~- and log -^~ for the discovery of the logarithms of small angles and conversely. If we wish to use 6 places only we must increase the 6th figure by a unit when the last figure is 5, 6, 7, 8 or 9, but not so when the last (7th) figure is o, i, 2, 3, 4 or 5 that is 5 with a mark over.

§•4- Problem. To find the logarithm belonging to a given number.

The numbers up to 10000 are found from pages 2 to 185 in the columns with N written above them and in the next column o the logarithm belonging to them. If however the number consists of five figures (in which one or more noughts may precede or follow, for these noughts affect only the characteristic of the logarithm and not the mantissae), we seek the first four figures in the column N and then precede in this line to the right hand until we come to that column which has the fifth figure at the head. The four figures standing there make with the three separated in the column o, standing in the same line, the mantissa of the logarithm of the number required. Should there be no separated figures in this line of column o, the three figures standing next above must be taken, except in the case, where the first of the 4 figures has a mark above it, in which case we must take the next three below. The characteristic must be appended according to the rule given in §. 2.

For example it is required to find the logarithm of 14459. Find the first four figures 1445 on page 14 in the column marked N and seek on a horizontal line proceeding to the right the column over which stands the fifth figure of the number, namely 9. We find in this column 1383 and with the three separated figures 160 standing in the column marked o we have the mantissa 1601383 and annexing the characteristic the logarithm of the number 14459 is 4,1601383.

§•5.

If the number of which we seek the logarithm contain more than five figures but fewer than eight (for the 8th figure of the logarithm required from the table will be uncertain) then the excess must be interpolated by the rule given above.

Let it be required to find the logarithm of the number 219467,83.

Introduction. XIII

In table I. at page 29 is found

for the number 21946 the mantissa 3413554 21947 3413752

consequently the difference I in the number corresponds to the difference 198 in the logarithm and to the remaining figures 783 of the number which we must consider as 0,783 belongs, according to the formula

i : 198 = 0,783 : x; x = 155,

155 is the difference of the logarithm, which difference is to be added to the smallest mantissa, so that the mantissa is

3413554 + 155 = 3413709 and with the addition of the characteristic the logarithm of the given number

is 5,34i3709-

The calculation may be facilitated by the proportional parts P. P. given at the side of the logarithm, wherein are contained the particular decimal of each difference. With the help of these the calculation stands in the follow ing form:

For the difference 198 we find at page 29 for 7 (0,7) 138,6 I 8 (0,08) 15,8 i sum =155, 3 (0,003) 0,6 J which number as before must be added to the smallest logarithm.

The whole interpolation may after a little practice be easily and certainly performed without writing down a single figure.

As another example we will find the logarithm to the number 59,487321.

We have for the number 59487 the mantissa 7744221 59488 7744294

and therefore the difference 73. To this difference the P. P. are

to 3 (0,3) 21,9 2 (0,02) 1,46 i (0,00 1 ) 0,07

sum = 23

which 23 must be added to the smallest logarithm and taking care to annex the proper characteristic the log is 1,7744244 for the number 59,487321.

§.6.

If the logarithm to a fraction is required, we may proceed in two ways, either subtract the logarithm of the denominator from the logarithm of the numerator or convert the fraction into a decimal and find the loga rithm to it in the manner pointed out above.

For example let it be required to find the logarithm of the fraction -^-4 We have the logarithm of 45 = 1,6532125 the logarithm of 532 = 2,7259116 therefore the logarithm of -^- = 0,9273009 2' t for which is commonly written 8,9273009 10.

But now since -~ = 0,084586466, we seek on page 155 the logarithm of 84586466 and again find after attending to the characteristic 0,9273009 2 or 8,9273009 10.

XIV Introduction.

§• 7- Problem. To find the number belonging to a logarithm.

Seek the first three figures of the mantissa among those separated in the o column, the four following figures in the columns marked i to 9 and take the number which will have five places of figures out of the table. If the given logarithm is not contained directly in the table we must have recourse to interpolation. The proportional parts P. P. are for this purpose. For example let it be required to find the number belonging to the logarithm 5,3413709- We find on page 29 the next smallest mantissa 34I3554 a* *ne number 21946, the next greatest mantissa 3413752 at the number 21947. The difference of the two logarithms is 198, the difference between the nearest and the given mantissa is 155 and we have the pro portion

i : x = 198 : 155, x =-^= 0,783

therefore the number 21946,783, but because the characteristic is 5 belonging to the logarithm 5,3413709 the number is 219467,83.

If we use the small tables of proportional parts the calculation will be as follows the given logarithm 5,3413709

to the number 21946 on page 29 belongs 3413554

difference 155

With P. P. 198 belongs to 7 (0,7) 138,6

16,4

to 8 (0,08) 15,84

56

to 3 (0,003) 59

consequently the number 219460 + 7,83 = 219467,83.

Second Example. Required the number belonging to the logarithm 9,1890460 10. On page 16

the mantissa 1890409 belongs to the number 15454 the mantissa 1890690 belongs to the number 15455.

The difference between the greatest and least mantissa is 281, and between the given mantissa and the smallest 51, therefore

to 51

P. P. 281 for i (0,1) 28,1

22,9

for 8 (0,08) 22,48 42

for i (0,00 1 ) 281

consequently the number is 15454181 or with the addition of the char acteristic 0,15454181.

§.8.

If we wish to extract a root or raise a number to a given power, we have then according to the formula given in §. I. to multiply or divide the logarithm of the basis, by the exponent which, if the exponent is a whole number, may be easily done. It is seldom however that this is the case, so

Introduction. XV

that it is easier to take the logarithm of the number from the logarithm of the basis and to add or subtract the result from the logarithm of the exponent, then to find again the logarithm of the number, again to consider this number as a logarithm and once more to obtain the corresponding number. If for instance it is required to find the value of 4, 753 2 2-»8 We have

log to 4,7532 = 0,6769861, and this multiplied by 2,48 gives 1,678925528 to which belongs the number 47,74474. We can however proceed thus

log 0,6769861 = 9,8305798 10

log 2,48 = 0,3944517 _

0,2250315

to which belongs the number 1,6789259 and this considered as a logarithm corresponds to the number 47,74478 and this errs only in the last decimal which cannot be entirely avoided from that found in the other way.

As another example let it be required to find the 4,75th root of 300 then we have the log of 300 = 2,4771213 which divided by 4,75 gives 0,5214992 to which belongs the number 3,322762. We can however proceed thus

log 2,4771213 = 0,3939473

log 4,75 = 0,6766936

~ I0

to which the number 0,5214993 belongs, and this regarded as a logarithm corresponds to the number 3,322762 which agrees sufficiently well with the preceding. In the extraction of roots however it may under some cir cumstances be more convenient actually to set down the negative logarithm.

§.9-

In order with the help of the magnitudes S and T placed at the foot of Table I. to find the logarithms of the sines and tangents of small arcs and the converse ; we make use of the following formulae

log sine = log arc" -f- S

log tangent = log arc" -f- T

log arc" = log sine S

log arc" = log tangent T

that is, in words, the logarithm of the sine or tangent the logarithm of an arc (arcus") expressed in seconds plus S or T and inversely the logarithm of the arc in seconds is equal to the logarithm of the sine or of the tangent minus S or T.

§. 10.

Problem. It is required to find the logarithm of the sine and of the tangent of the arc of if 56",76

17' 56",76 = io76",76 gives log io76",76 = 3,0321189 According to page 7 after the required %

interpolation io76",76 S = 4,6855729

T = 4,6855788

therefore log sin = 7,7176918

log tang = 7,7176977

XVI Introduction.

Problem. It is required to find the arcs belonging to log sin 7,4897320 and log tang 8,0079482.

In Table II. we see that on page 198 and page 210 to the log sine of the arcs between 10' 37" and 10' 38" and to the log tang of the arcs between 35' o" and 35' i" belong the values of S and T on pages 4 and 28 namely S = 4,6855742 and T = 4,6855899. These subtracted from the above given logarithms give log arc = 2,8041578 and 3,3223583 to which belong the numbers (p. 113 and 28)

637^,0269 = 10' 37^,0269 and 2100^672 = 35' o",6j2.

It is self evident that we can with the magnitudes S and T find also the cosine and cotangent of angles which are between 87° 40' and 90°.

§• ii.

Table II.

contains the logarithms of the trigonometrical functions Sine, Cosine, Tan gent, Cotangent to 7 decimals to every second for the first and last 6 degrees of the quadrant, all with differences and for the most part also with proportional parts. From page 188 to 197 a minute is on every page and from page 198 to page 372 two minutes are on every page.

From to the degrees and minutes stand at the top of the page, the seconds in the vertical column on the left, from 84° to 90° the degrees and minutes are at the bottom of the page and the seconds belonging to them in the vertical columns on the right. From page 198 to 232 the characteristic and the two first decimals of the functions (which are named on the top of the page) namely Sine, Tangent, Cotangent and from page 233 to 372 the three first decimals, are separated and placed above with the tenths of the seconds, so that in the vertical column are contained first the five last and afterwards the three last decimals of the logarithms of these functions. From page 198 to 372 the characteristic and the three first decimals of the logarithm of the Cosine are separated also.

The sign placed on the first place of the division means that the above separated decimals of the logarithms must be increased by a unit, and the sign * that the separated decimals must be diminished by a unit when they are combined with the other decimals to take out a logarithm.

The differences of the logarithms standing in the division marked above Sine are in the division to the right and they are not here required for the Cosine; for the tangent and cotangent since they have a common difference they stand in the division between the two functions, marked above with the letters d. c. It may as well also be here mentioned that the Sine and Cosine for the whole quadrant, the tangents between and 45° the cotangents between 45° and 90° are proper fractions and the char acteristics of these functions have all been increased by 10 in order that the characteristic 10 may be omitted from these functions.

§• I*--

Problem. It is required to find the logarithm of the functions sin, cos, tan

and cotan, for a given acute angle.

If the given arc is found in the Table II. then the function required is taken directly out of the corresponding column. But if this is not the case

Introduction. XVTI

we must interpolate and in doing this care must be taken whether the successive values of the function form an increasing or decreasing series, because on this it will depend, whether the quantity obtained by inter polation is to be added or subtracted from the given magnitude.

Example: It is required to find the logarithms of the sin, cos, tan and cotan of the acute angle 16' 23",73. We have from page 321

log sin 16' 23" = 8,8722132, d. = 2 82 increasing and with the P. P. for 7 (0,7) 197,4

» 3 (Q,03) 8,5

therefore log sin 1 6' 23^,73 8,8722338

Further we have from page 321

log cos 16' 23" 9,9987911 log cos 1 6' 24" = 9,9987909

whence we obtain without difficulty for the 0^,73 the difference i, decreasing consequently we get for log cos 16' 2 3", 73 = 9,9987910. Again we have from page 321

log tan 16' 23" 8,8734221, d. c. 284 log cotan 16' 23" 1,1265779. With the P. P. of the difference 284 we obtain for 7 (0,7) 198,8

" 3 (Q,Q3) 8,5

207

which added to the log tan and subtracted from the log cotan gives for the log tan = 8,8734428 and log cotan = 1,1265572.

§- 13.

Problem. // is required to find the angle belonging to a given trigonometrical

logarithm.

Seek the logarithm in the division which is marked either above or at the bottom with the function to which the logarithm belongs. If the given logarithm is exactly found, then we have the angle immediately and it ends with a whole number of seconds. If the logarithm is not found exactly then we take the next smallest or the next largest according as the logarithm of the arc is increasing or diminishing, and interpolate for the difference between the given logarithm and that found, with the difference given in the table for a second, for the required fraction of a second.

Example: It is required to find the arc or angle v belonging to the given log tan v = 8,7852346.

We find on page 297 the next smallest logarithm since the logarithm is increasing with the arc

log tan 8,7852057 at 29' 23" and d. c. = 347; we have given log tan 8,7852346 difference = 289, whence from the proportion

347 : 289 = i" : x we obtain x = o",83.

XVIII Introduction.

With the assistance of the proportional parts we have for

289 with 347 P. P. 8 (0,8) 277,6

, u,4

3 (0,03) 10,4

again therefore 0^,83 as before and the required angle v is = 29' 23",83. Second Example: It is required to find the angle v of which the given log cos v is = 8,4932917.

On page 246 we find the next greater logarithm of the cosine, because the logarithm diminishes when the arc increases

log cos 8,4933102 at 88° 12' 56" and d. 676, we have given log cos 8,40,32017

^ - : The P. P. belonging to 676 are omitted from want of

difference = 185 space, we take therefore 675 and add to the given

2 (O 2) I 3S 2 P. P. the proportional parts of the difference i, that

* ' ' every one can easily form in his head and add but

49 »* which we may perform by means of the table given

7(0,07) 47,3 in§'15'

therefore v 88° 12' 56//,27.

It is self evident that we might have taken the next smallest logarithm that belongs to the cos 88° 12' 57". Then we should have obtained o",73 as the fraction of the second that must be subtracted from 88° 12' 57" which leads to the same result.

§• 14-

Since on account of the want of space the proportional parts are

nitted belonging to the trigonometrical functions of 10' as far as 20'

3 /e have to seek by interpolation (as in the proportion given in the first

example of the former §.) the fraction of the second required. It may also

be remarked, that from the same cause, want of space, all the differences of

the proportional parts could not be given, in such a case therefore we must

take the nearest P. P. and form the excess mentally or with the help of the

following table, either of which may be easily done.

If we v/ish to calculate with only 6 decimal places, just as with the logarithms of numbers with 6 decimals, whenever the seventh figure is o, i, 2 , 3 , 4 or 5" the sixth figure is not changed ; but it must be increased by unity when the seventh decimal is 5, 6, 7, 8 or 9. The differences and the proportional parts given in the 7 figure tables can be directly used, taking notice, that the decimal point must be moved from the seventh to the sixth place, or that the tenths of the seventh place are units of the sixth place.

§• IS-

Table III.

contains from page 374 to 507 the logarithms of the four trigonometrical functions of the remaining 78 degrees of the quadrant namely from o' to 83° 60' for every tenth second. The arrangement is similar to that in Table II. only that the degrees from 6 to 44 run from above and from 45 degrees to 83 from below; only the minutes and every tenth second for the first portion of the degrees (6 . . 44) stand in two divisions to the left and for the last portion (45 . . 83) in two divisions to the right.

Introduction.

XIX

Proportional parts are not given for all differences, they are omitted for the differences of the logarithms of the Cosines from to and are given for the differences of the logarithms of the Sine , Tangent and Cotan gent in the first instance at intervals of 10 units and further on at 5, 4, 3, 2 and lastly one unit.

If now the porportional parts of the required difference are not given, but only that of the nearest difference, then we may either increase this mentally or make use of the small table printed on a separate page of the following form.

Table for the interpolation of the P. P.

Complement of the difference.

1 1 2

3

4

5

Q

7

8

9

I

O.I

O.2

0.3

0.4

0-5

0.6

0.7

0.8

0.9

2

O.2

0.4

0.6

0.8

I.O

1.2

1.4

1.6

1.8

3

0-3

0.6

0.9

1.2

i -5

1.8

2.1

2.4

2.7

4

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3-2

3-6

5

0.5

I.O

L-S

2.0

2-5

3-0

3o

4.0

4-5

6

0.6

1.2

1.8

2.4

3-o

3-6

4.2

4.8

5-4

7

0.7

1.4

2.1

2.8

3-5

4.2

4-9

S-6

6-3

8

0.8

1.6

2.4

3-2

4.0

4.8

5.6

6.4

7.2

9

0.9

1.8

2.7

3-6

4-5

5-4

6-3

7.2

8.1

What was said at the conclusion of §. n. with regard to Table II., applies also with respect to Table III., namely, with regard to the augmenta tion and increase of the characteristic of the logarithms of the sine and cosir » of the tangents from to 45° and the cotangents from 45° to 90°.

§. 1 6.

The use of Table III. is quite similar to that of Table II. only it is o be taken notice, that the numbers standing in the difference column are i )t the differences for i" as in Table II. but are for 10". Some examples will facilitate the use of the Table.

Example: It is required to find the logarithm of sin, cos, tan and cotan for the acute angle 10' 45",45. We have from page 393

log sin 10' 40" = 9,2027561, d. = 1303 increasing. The difference 1303 multiplied by 0,545 (for 5",45) gives 710 and this added to the above gives

log sin 10' 45",45 9,2028271.

If we would make use of the P. P. given on page 393 we do not find the difference 1303 but only 1300, we make use of this and then again reckon for the 3 as follows:

P. P. for 5" (0,5) 650

0,4 (0,04) 52,0 0,05 (0,005) 6,5

708,5.

separate tablet for the difference 3 we have

for 0,5 1,5 ,, 0,045 o*1 so

Then from the above

sum is 7IQ again

as before. We might have used the difference 1310 and then we should have had to have subtracted the small quantities belonging to 7.

XX Introduction.

In order to find the log cos

log cos io7 40" = 9,9944044, d. = 34 decreasing, and 34 x 0,545 (for 5^,45) = 18,53 therefore

log cos 10' 45",45 = 9,9944025-

The small table of differences for 34 cannot be inserted from want of space. Again log tan io7 40" 9,2083517, d. 1337 increasing. The nearest difference given is 1340

P. P. for 5" (0,5) 670 0,4 (0,04) 53,6 0,05 (0,005) 6,7 Since the difference is 3 units too great we

have to subtract 3x0, 545 1,6

729

therefore log tan io7 45",45 = 9,2084246.

Lastly the log cotan io7 40" = 0,7916483, d. = 1337 decreasing and 1337x0,545 =

therefore log cotan io' 45^,45 = 0,7915754.

Second Example: It is required to find the log cotan and log sin of 56° i' g",6g.

We have on page 541 log cotan 56° i' o" = 9,8287149, d. = 45 4 decreasing. P. P. for 9" (0,9) 408,6

0,6 (0,06) 27,2

0,09 (0,009) 4»i

therefore log cotan 56° i; g"fog = 9,8286709. For log sin 56° i' o" = 9,9186594, d. = 142 increasing.

.P.P. for 9" (o,9) 127,8

-i . » 0,6 (0,06) 8,5

0,09 (0,009) _ 1,3 therefore log sin 56° i7 g",6g = 9,9186732.

It would have been easier in this example to have made use of interpolation, if we had taken 56° i7 9/7,69 = 56° I7 io77 o/7,3i and have found the logarithm of 56° i7 io77 and interpolated for o",3i. The calculation would have stood as follows:

log cotan 56° i7 io77 = 9,8286695, d. 454 decreasing. P.P. for o/7,3 (0,03) 13,6

0,01 (0,00 1 ) _ 0,5 log cotan 56° i7 g",6g = 9,8286709. And we have

log sin 56° i7 io77 = 9,9186736, d. = 242 increasing. P. P. for o77,3 (0,03) 4,3

0,01 (0,001) 0,1

log sin 56° i7 9^,69 = 9,9186732.

§• 17-

If we would find the acute angle belonging to a given log sin, cos, tan, cotan; then we proceed also as in Table II. We seek in the Table III. the ney* emailer or the next larger logarithm— the first when the logarithms of the sine or tangent are given and the last if the cosine or cotangent.

Introduction. XXI

We form between these given logarithms and that taken out of the table a difference which we shall call z/. We now take out of the table the difference d standing between the next smallest and next largest logarithm, and calcu late the proportion

d : z/ = 10" : x

and so find x, which added to the angle we have obtained from the table gives the required angle.

For the solution of the proportion we may also make use of the small tables of differences and their proportional parts, but as all the differences are not tabulated we must augment the proportional parts which is easily done from the table in §. 15.

Example: We have given log tan v = 0,4137916 and we seek the angle v belonging to it.

On page 464 we have the next smaller logarithm

log tan 68° 54' 30" = 0,4137495, d. 627 the given log = 0,4137916

z/ = 421

therefore 627 : 421 = 10" : x and x = 6", 71 and the required angle v is 68° 54' 3 6", 7 1.

With the P. P. we have, as the difference of 627 is entered

421

P. P. for 6" (0,6) 376,2

44,8 0,7 (0,07) 43,89

0,01 (0,00 1 ) 63

and we get again 6",7i.

Second Example: It is required to find the angle v belonging to log co- tan v = 0,6067049.

On page 421 we find the next largest logarithm

log cotan 13° 53' 30" = 0,6067396, d. = 903 given logarithm = 0,6067049

A = 347

therefore 903 : 347 = 10" : x and x = 3", 84 and the required angle v is 13° 53' 33",84.

There is no difference table for 903 the nearest are 905 and 900. We may use either. If we take the first, then since 903 = 905 2

^ = 347

P. P. for 3" (0,3) with d = 905 271,5 1 ,,3 d = 2 -0,6 JJ

76,1

P. P. for o",8 (0,08) with d = 905 72,4 | ,,o,8 d = 2 16]

3,86

P. P. for o",04 (0,004) with d = 905 3*620 1 0,04 d = 2 8 J

and thus we again get 3^,84 just as above.

XXII

Introduction.

A well practised calculator will perform this completation of the P. P. for the most part mentally, nor is it necessary to enter all the decimals places which is here done to offer a complete example.

It has been already said in §. 16. that it is often more advantageous when we seek the angle belonging to some given log sin, log cos, log tan, log cotan not from the next smallest and greatest logarithm in the Table but contrariwise from the next greatest and next smallest so that seconds and fractions of seconds may be taken negatively.

§. 18.

The Tables II. and III. contain the logarithms of the trigonometrical functions of the first quadrant (if we limit ourselves to the four quadrants) in which all the functions are to be taken positively. In the 2nd quadrant the sine alone is positive cos, tan and cotan are negative; in the 3rd quadrant sine and cosine are negative and tan and cotangent positive; in the 4th qua drant cosine alone is positive and sin, tan, and cotangent negative.

If an arc or angle is given greater than* 90° subtract 90° from the given angle as often as possible. If we have subtracted two right angles or 1 80° then we may obtain the function which is left directly in the tables taking notice however of their signs, but if we have subtracted I or 3 right angles that is 90° or 270° then -we must seek the complement of the angle, therefore instead of the sine the cosine, instead of the tangent the cotangent or inversely taking notice likewise of the sign of the function.

We may easily fix these rules in the memory and also the signs which are used by help of the following Table

Angle

Sine

Cosine

Tangent

Cotangent

X

+ sin x

+ cosx

+ tan x

-f- cotan x

90° + x

+ COSX

sin x

cotan x

tan x

i8o° + x

sin x

cosx

H-tanx

+ cotan x

270° -f x

cos x

+ sin x

cotan x

tan x

Conversely if we seek the arc or angle belonging to a function, we find, limiting ourselves to four quadrants, that 4 angles belong to every single value when the sign is left out of sight, but if the sign is given, then there are only 2 angles belonging to each value. We must therefore to prevent ambiguity, fix the quadrant in which the angle lies, or the sign as well as the function must be given, but even then the two functions cannot be both tangents nor both cotangents. In most cases the logarithms of two numbers are given for the determination of an angle that are proportional to the sine and cosine; for instance log asinA and log acosA and by subtraction we find log tan A. The quadrant in which the angle A lies is pointed out as well by the sign of the tangent and that of the sine or cosine.

§• J9-

The tables of the trigonometrical functions may be also used for the calculation of exponential magnitudes as well those with real exponents, on

r tne ? . - ter than 360° suLtract 360° as often as it may be necessary until

an arc is left which is less than 360°.

, Introduction. XXIII

which the so-called hyperbolic functions depend, as also those with imaginary exponents comprising the complex units. If we put

,»-* = tan qp or p x = log tan qp

where /* = 0,4342945, then we obtain

sin gj = x 4- -x * cos ^ = * *. 4- ^"x ' ^n qp =

and for imaginary arcs sin

In ix = - , tan ix i cos <r , cos I'OT = —r-

fon JY> " c-ir\

where in order that it may be expressed in degrees

y is = 57,2957795 •*• For example if we have given x = o, 75 , then

IM* = 0,3257209 = 9,6742791 10 = log tan ~ qp

-f-g> = 25° I7'4",i3, qr ^ 50° 34' 8",26 and therewith

log = log Sin5o03'4,8,,)26 = log cos 0,75 «• = 0,121 .326

^>,75_tf-o,73 j I

log - - - =I°g tan 50° 3V 8^,26 = = log 7 sm o'75 ' = 9.QI5O393

log ^ = log cos 50° 34' 8",26 log y tan 0,75 i = 9,8028757.

If there were appended to the trigonometrical tables which contain the log sin, cos, tan and cotan an additional column, giving the log tan of the semi-angle, then we could get the logarithms of the hyperbolic functions without the necessity of seeking out the angle. The logarithm of the Tan gents facilitates also the solution of the quadratic and cubic equations which it is well known may be performed by the trigonometrical tables, as is shown in every treatise on the theory of equations.

Moreover if we should have to reckon many hyperbolic functions, then we should do better to calculate some tables from which the angle q> with the argument x may be taken and conversely with the argument qp we may take out x.

§• 20.

In conclusion we may enumerate that the Tables on page 186 for the conversion of natural logarithms into common logarithms and the inverse, that on page 608 of parts of the arc in terms of the radius on page 609 for the conversion of degrees of arc into time , hours , minutes and seconds , as well as that on page 610 of constants and the comparison of the various foot lengths of the principal continental states with the metre are so easily used that it is not necessary here to offer any further explanation or example.

Conten ts.

Preface

Introduction .............

I. Table of Briggs's or common Logarithms of the natural numbers from I to looooo and the auxiliary trigonometrical functions S and T for the calculation of the Logarithms of Sines, Tangents and Cotangents of the Angles from o to 10000 seconds, &c. &c. ..........

II. Table of the trigonometrical functions from to and 84° to 90° for every

second 187

III. Logarithms of the trigonometrical functions from o' to 84° o' for every ten

seconds 373

TABLE

OF

BRIGGSS OR COMMON LOGARITHMS

OF THE NATURAL NUMBERS

FROM 1 TO 100000

AND THE

AUXILIARY TRIGONOMETRICAL FUNCTIONS S AND T

FOR THE CALCULATION OF THE

LOGARITHMS

OF SINES, TANGENTS AND COTANGENTS OF THE ANGLES FROM 0 TO 10000 SECONDS &C. &C. '

0 250

N.

Log.

N.

Log.

N.

Log.

N.

Log.

N.

Log.

0 I

2

3

4 6

8 9 10 n

12 13

14 15

16

17 18

19

20

21 22 23

24 25 26

27 28 29

30

31 32

33

34 35 36

37 38 39

40

41

42

43

44 45 46

47 48 49

50

cc

50

51 52 53

54

57 58 59

60

61

62 63 64

65 66

67 68

69 70

71 72 73

74 75 76

11

79 80

81 82 83 84

85

86

87 88 89

90

91 92

93

94 95 96

97 98 99

100

698 9700

100

101 102 103

104 105

106

107 1 08 109

110 III

112 114

116

117 118 119

120

121 122 I23

124

125 126

127 128 129

130

131 132 133

134 135 136

138 139

140

141 142 143 144

145 146

147 148 149

150

000 0000

150

151 152

'55 156

157 158

160

161 162 163 164

165 166

167 168 169

170

171 172 173 174

176

177 178

ISO

181

182

183

184 185

186

187 188 189

190

191 192 193 194

'95 196

197 198 199

200

1760913

200

201 202 203

204 205 206

207 208 209

210

211 212 213

214

215 216

217

218

219

220

221 222 223

224 225 226

227 228 229

230

231 232

233

234 235 236

237 238 239

240

241 242 243 244

245 246

247 248 249

250

301 0300

000 0000

301 0300 477 1213 602 0600 698 9700 7781513

845 0980 903 0900 954 2425

707 5702 7160033 724 2759

7323938 740 3627 748 1880

755 8749 763 4280 770 8520

0043214

008 6002 0128372

0170333

021 1893 025 3059

029 3838 033 4238 037 4265

1789769 181 8436 1846914

187 5207

I9033I7 193 1246

195 8997 1986571

201 3971

303 1961 30535H 307 4960

309 6302 3ii 7539 313 8672

3159703 3*80633 320 1463

000 0000

7781513

041 3927

204 1200

3222193

041 3927

079 1812

1139434

146 1280 1760913

2O4 1200

230 4489

2552725 2787536

785 3298 7923917 799 3405

806 1800 8129134 819 5439

826 0748 832 5089 838 8491

045 3230 0492180 053 0784

056 9049 060 6978 0644580

068 1859 071 8820 075 5470

2068259 2095150 212 1876

2148438 2174839 22O I08l

2227165 225 3093 227 8867

324 2825 3263359 328 3796

3304138 332 4385 3344538

336 4597 338 4565 340 4441

301 0300

845 0980

079 1812

2304489

342 4227

3222193 342 4227

361 7278

3802112 397 9400 4H9733

431 3638 4471580 462 3980

851 2583 8573325 863 3229

869 2317 8750613 8808136

886 4907 892 0946 897 6271

0827854 0863598 0899051

0934217

096 9100

1003705

103 8037 1072100 no 5897

2329961

235 5284 238 0461

240 5492 243 0380 2455127

247 9733 25* 4200 2528530

344 3923 3463530 348 3049

350 2480 3521825 354 1084 3560259 3579348 3598355

4771213

903 0900

H39434

2552/25

361 7278

491 3617 505 1500 5185139

53i 4789 544 0680 5563025

5682017 5797836 591 0646

9084850

9I38I39 9190781

924 2793 9294189

934 4985

9395193

944 4827 949 3900

1172713

1205739 1238516

127 1048 1303338 133 5389 1367206 1398791 143 0148

257 6786 2600714 2624511

2648178 2671717 269 5129

271 8416

274 1578 2764618

3636120 365 4880 3673559

3692159 371 0679 372 9120

374 7483 376 5770 3783979

602 0600

9542425

146 1280

2787536

3802112

6127839 623 2493 633 4685

643 4527 6532125 662 7578

672 0979 681 2412 690 1961

9590414 963 7878 9684829

973 1279 977 7236 9822712

9867717 991 2261 995 6352

1492191 1522883 i55336o

1583625 161 3680 1643529

I673I73 1702617 1/31863

281 0334 283 3012 285 5573

2878017 290 0346 292 2561

294 4662 296 6652 2988531

3820170

3838154 385 6063

3873898 389 1661 390 9351 392 6970 3944517 396 1993

698 9700

000 0000

1760913

301 0300

397 9400

IN.

. Log-

N.

Log.

N.

Log.

N.

Log.

N.

. Log.

o"= o°o/ o" S. =4.685 5748 7 T. =4.685 5748 7 50 = o o 50 5748 6 5748 8 100 = o i 40 5748 5 5749 o 150 = o 2 30 5748 3 5749 4

200 = 0 3 20 5748 0 5750 0

250 500

X. LO.CT.

X. Log.

X. Log.

X. Log.

X.

Log.

250

251 252

253

254

1

257 258

259 260

261 262 263

264 265 266

267 268 269

270

271

272 273

2/4 2/5

276

277

278

2/9

280

281 282 283

284

285

. 286

287 288 289

290

291 292 293

294 295 296

297 298 299

300

397 9400

300

301 302 303

304 305 306

307 308

309 310

311 312 313

3H 315

316

317 318 319

320

321 322 323

324 325 326

327 328

329 330

331 332 333

334 335 336

337 338 339

340

341 342

343

344 345 346

347 348 349

350

r7/I2I3

350

351 352 353

354 355 356

357 358 359

360

361 362 363

364 365 366

367 368 369

370

371 372 373

374

375 3/6

377 378 379

380

381 382 383

384

385 386

387

388

389 390

391 392

393

394 395 396

397 398 399

400

544 0680

400

401 402 403

404 405 406

407 408

409 410

4ii 412 413 414

415 416

417 418 419

420

421 422 423 424

425 426

427 428 429

430

431 432 433

434 435 436

437 438 439

440

441 442

443

444 445 446

447 448

449

450

602 0600

450

451

452 453

454 455 456

457 458 459

460

461 462

463 464

465 466

467 468

469 470

471 472

473

474 475 476

477 478 479

480

481 482 483 484

485 486

487 488 489

490

491 492

493

494 495 496

497 498 499

500

6532125

399 6737 401 4005 403 1205

404 8337 406 5402 408 2400

4099331 411 6197 4132998

4/8 5665 480 0069 481 4426

482 8736 4842998 4857214

4871384 488 5507 4899585

545 3071

5465427 547 7747

549 0033 5502284 55i 4500 552 6682 553 8830 555 0944

603 1444 604 2261 605 3050

6063814

6074550 608 5260

609 5944 610 6602 611 7233

6541765 655 1384 6560982

6570559 6580114 6589648

659 9162 660 8655- 661 8127

4149733

491 3617

5563025

612 7839

6627578

4166405 4183013 4199557 421 6039

423 2459 4248816

4265113 428 1348

429 7523

492 7604 4941546 495 5443 496 9296 4983106 499 6871

501 0593

5024271

503 7907

557 5072 5587086 559 9066

561 1014 562 2929 563 4811

564 6661

565 8478 5670264

6138418 6148972 6159501

6170003 618 0481 6190933

620 1361

621 1763

622 2140

663 7009 664 6420 665 5810

666 5180 6674530 6683859

6693169 670 2459 671 1728

43i 3638

505 1500

568 2017

623 2493

672 0979

432 9693 434 5689 436 1626

437 7506 4393327 440 9091

442 4798 444 0448 445 6042

506 5050

50/8559 509 2025

5J05450 5118834 5132176

5H5478 5158738 5I7I959

5693739 5705429 571 7088

5728716 5740313

575 1878

57634H 5774918

578 6392

624 2821

6253125 626 3404

627 3659 6283889 629 4096

6304279 631 4438 6324573

673 0209 673 9420 6748611

675 7783 676 6936 677 6070

6785184

6794279 6803355

447 I58°

5185139

579 7836

633 4685

681 2412

448 7063 450 2491 451 7864

4533183

454 8449 456 3660

4578819

459 3925 460 8978

5198280 521 1381 522 4442

523 7461

525 0448 5263393

527 6299 5289167

5301997

5809250 5820634 583 1988

5843312 585 4607 586 5873

5877110

5888317 589 9496

634 4773 635 4837 636 4879

6374S97 638 4893 639 4865-

640 4814 641 4741 642 4645

682 1451 683 0470 683 9471 684 8454

6857417 686 6363

687 5290 6884198 689 3089

462 3980

53i 4789

591 0646

643 4527

690 1961 j

463 8930 465 3829 466 8676

468 3473 469 8220 4712917

472 7564 4742163 4756712

5327544 5340261

535 2941

5365584 5378191 5390761

540 329" 54i 5792 5428254

592 1768 593 2861 594 3926

595 4962 596 597i 597 6952

598 7905 5998831 600 9729

6444386 645 4223 646 4037

647 3830 648 3600 649 3349

650 3075 651 2780 16522463

691 0815 691 9651 692 8469

693 7269 694 6052

6954817 6963564

697 2293 698 1005

477 1213

544 0680

.602 0600

16532125

698 9700

X. ! - Log.

N. - Log.

N. Log.

X. Log.

X. Log.

250"= o°4'io" S. =4.685 5747 6 T. =4.685 5750 8 300 = o 5 o 5747 i 5751 7 350 = o 5 50 5746 6 5752 8 400 = o 6 40 5745 9 5754 i 450 = o 7 30 5745 2 5755 6

500 750

N.

Log.

N.

Log.

N.

Log.

N.

Log.

N.

Log.

500

698 9700

550

7403627

600

778I5I3

650

8129134

700

845 0980

501 502

503

504 505 506

507 508

509

699 8377 700 7037 701 5680

702 4305 703 2914 704 1505

705 0080 705 8637 7067178

55i 552 553

554 555 556

557 558 559

741 1516

741 9391 7427251

743 5098 744 2930 745 0748

745 8552 746 6342 7474118

60 1 6O2 603

604 605 606

607 608 609

778 874? 779 596S 7803173 781 0369

78i 7554 782 4726

783 1887 783 9036 7846173

651 652 653

654 655 656

657 658

659

813 5810 8142476 8149132

815 5777 8162413 8169038

8175654 818 2259 8188854

701 702 703 704

705 706

707 708 709

845 7180 8463371 846 9553

847 5727 848 1891 848 8047

8494194 8500333 850 6462

510

707 5702

560

748 1880

610

7853298

660

8195439

710

851 2583

511 512

5^3

5H 515 516

5^7 518 519

708 4209 709 2700 7101174

7109631 711 8072 7126497

713 4905 7143298 715 1674

561 562

563

564 565 566

567 568

569

748 9629

749 7363 750 5084

751 2791 7520484 752 8164

7535831 754 3483 755 1123

611 612 613 614

6i5 616

617 618 619

7860412 7867514 787 4605

788 1684 7888751 789 5807

790 2852 790 988^ 791 6906

661 662 663

664 665 666

667 668 669

820 2015" 8208580 8215135

822 1681 8228216 823 4742

824 1258 824 7765- 825 4261

711 712 7J3 714

715

716

717 718 719

851 8696 8524800 853 0895

853 6982 8543060 8549130

8555192 856 1244 856 7289

520

7160033

570

755 8749

620

7923917

670

826 0748

720

857332^

521 522

523

524 525 526

527 528

529

7168377 7176705 7185017

719 33*3 7201593

7209857 721 8106 722 6339

723 4557

57i

572 573

574 575 576

577 578 579

7566361 7573960 758 1546 7589119 759 6678 760 4225

761 1758 761 9278 762 6786

621 622 623

624 625 626

627 628 629

7930916

793 7904 794 4880

795 1846 795 8800 796 5743 797 2675 797 9596 798 6506

671 672 673 674

675 676

677 678 679

8267225 827 3693 8280151

828 6599 8293038 829 9467

830 5887 831 2297 831 8698

721

722 723 724

725 726

727 728 729

8579353 8585372 859 1383

8597386 8603380 8609366

861 5344 862 1314

862 7275

530

724 2759

580

763 4280

630

799 3405

680

832 5089

730

863 3229

531 532

533

534 535 536

537 538 539

725 0945 7259116 726 7272

7275413 7283538 729 1648

729 9743 7307823 731 5888

581 582

583

584 585 586

587

588 589

764 1761 764 9230 765 6686

7664128

7671559 767 8976

7686381 769 3773 770H53

63i 632

633

634 635 636

637 638

639

800 0294 800 7171 80 1 4037

802 0893 802 7737 803 4571

804 1394

804 8207 805 5009

681 682 683

684

685 686

687 688 689

833 H71 833 7844 834 4207 8350561 835 6906 8363241

8369567 837 5884 8382192

73 1 732 733

734 735 736

737 738 739

8639174 864 5111 865 1040

865 £961 * -2873 866 8778

8' - 467? 860 056^ 868 6444

540

7323938

590

7708520

640

806 1800

690

838 8491

740

869 2317

54i 542 543

544 545 546

547 548 549

733 1973 733 9993 734 7998

735 5989 7363965 7371926

737 9873 738 7806

739 5723

59i 592

593

594 595 596

597 598 599

77i 587S 7723217 773 0547 773 7864 7745170 775 2463

775 9743 7767012 7774268

64i 642 643 644

645 646

647 648 649

806 8580 807 5350

808 2110 808 8859

809 5597 8102325

8109043 8H5750 812 2447

691 692 693 694

695 696

697 698 699

839 478o 840 1 06 1 840 7332

841 359J 841 9848 842 6092

843 2328 843 8554 844 4772

741 742 743

744 745 746

747 748 749

8(39 8182 870 4039 870 9888

871 5729 8721563 872 7388

873 3206 873 9016 8744818

550

7403627

600

778i5i3

650

812 9134

700

845 0980

750

8750613

N.

Log.

N.

Log.

N.

Log.

N.

Log.

N.

Log.

5oc

55C 6oc 65C 7oc

"= = 0

= 0 I = 0 I = O I

8' 20" £ 9 10

0 0

o 50 i 40

. = 4.6*

}5 5744 4 5743 5 5742 5 574i 5 5740 3

rp

4-685 575 575 576< 576 576

7 2 ) o 3 9 3 o 5 3

750 1000

X. | Log.

X. | Log.

X.

Log.

N. | Log.

X.

Log.

750

75i 752 753

754 755 756

757 758 759

760

761 762

763

764 765 766

767

768

769

770

771 772 773

774 775 776

777 778 779

.780

781 782 783 784

785 786

787 788

789 790

791 792 793

794 795 796

797' 798

799

800

8750613

800

801 802 803

804 805 806

807 808 809

810

811 812 8i3

814 815 816

817 818 819

820

821 822 823

824

825 826

827

828

829 830

831 832

833

834

835 836

837 838 839

840

84i 842 843 844

845 846

847

848 849

850

903 0900

850

851 852

853

854

855 856

857 858

859 860

861 862 863

864

865

866

867

868 869

870

871

8/2

873

874

8/5 876

877

878

8/9

880

881

882 883

884

885 886

887 888 889

890

891 892 893

894

895 896

897 898 899

900

9294189

900

901 902 903

904 905 906

907

908 909

910

911 912 913 914

915 916

917 918 919

920

921 922 923

924 925 926

927 928 929

930

931 932 933

934 935 936

937 938 939-

940

941 942

943

944

945 946

947

948

949 950

954 2425

950

95i 952 953

954

955 956

957

958 959

960

961

962 963

964

965 966

967 968

969 970

971 972

973

974

975

976

977 9/8 979

980

981 982 983

984

985 986

987

988 989 990 991 992

993

994

995 996

997 998 999

1000

977 7236

875 6399 8762178

8/6 7950

8773713 877 9470 878 5218

879 0959 879 6692 8802418

903 6325 9041744

9Q471 55 905 2560

905 7959 9063350

906 8735 9074114 907 9485

929 9296 9304396 930 9490

93i 4579 931 9661 932 4738 932 9808 933 48/3 933 9932

9547248 955 2065 9556878

956 1684 956 6486 957 1282

957 6073 9580858 958 5639

978 1805 978 6369 9790929

979 5484 9800034 9804579

9809119 98i 3655 981 8186

8808136

908 4850

934 4985

9590414

982 2712

881 3847 881 9550 882 5245

883 0934 8836614 8842288

884 7954 885 3612 885 9263

909 0209 909 5560 9100905

910 6244 911 1576 911 6902

912 2221 9127533 9132839

935 0032 935 50/3 9360108

9365137 9370161

93751/9 9380191

9385197 9390198

9595184 959 9948 960 4708

960 9462 961 4211 961 895^

962 3693 962 8427 9633155

9827234

983 i/5i 983 6263

984 0770

984 5273 9849771

985 4265 985 8754 9863238

886 4907

9I38I39

9395193

963 /8/8

9867717

8870544 8876173 888 179^

8887410 8893017 8898617

890 4210 890 9796

891 5375

9H3432 9148718 9153998 9159272

9164539 9169800

9I75055

9180303

9185545

9400182 9405165 941 0142

9415114 9420081 942 5041 942 9996

943 4945 943 9889

964 2596

964 7309 965 2017

965 6720 966 1417 966 6110

967 0797 967 5480 9680157

9872192 987 6663 988 1128

988 5590 989 0046 989 4498 989 8946

9903389 990 7827

892 0946

9190781

944 4827

9684829

991 2261

8926510 893 2068 893 7618

8943161 894 8697 895 4225

895 9747 896 5262 897 0770

919 6010 9201233 920 6450

921 1661 921 6865 922 2063

922 7253- 923 2440 923 7620

944 9759 945 4686

945 9607 946 4523 946 9433 947 4337

947 9236 9484130 948 9018

968 9497 9694159 9698816

9/o 3469 970 8116 971 2758

971 7396 9722028 9726656

991 6690 992 1115" 9925535 9929951 993 4362 993 8769

9943172 994 7569 995 1963

8976271

924 2/93

949 3900

973 12/9

995 6352

898 1765 898 7252 899 2732

899 8205 900 3671 9009131

901 4583

902 0029 902 5468

924 7960 9253121 925 8276

926 3424 9268567 927 3704 927 8834 9283959 928 9077

949 87/7 9503649 9508515

951 3375 951 8230 952 3080

952 7924 953 2/63 953 7597

9735896 974 0509 9745H7

974 9720 97543*8 9758911

9/6 3500 976 8083 9772662

996 0737 9965117 996 9492

997 3864 9978231

998 2593

9986952 999 1305 9995655

903 0900

9294189

954 2425

9777236

OOO OOOO

X. Log.

X. Log.

X. i Leg.

X. ! Log.

X.

Log.

750"= oci2'3o" $.=4.685 5739 i T. =4.685 5767 8 800 = o 13 20 5737 8 577° 4 850 = o 14 10 5736 4 5773 3 900 = o 15 o 5734 9 57/6 2 950 = o 15 50 5733 3 5779 4

1000 1050

N.

o I i

2 3

4

5

6

7

8

9

P. P.

1000

01 02 03 04

05 06

07 08 09

1010

II

12

13

14 15

16

17

18 19

1020

21 22 23 24

26

27 28 29

1030

31 32

33

34 35 36

37 38 39

1040

41

42

43

44 45 46

47 48

49 1050

000 0000

0434

0869

1303

r737

2171

260^

3039

3473

3907

i

2

3 4 S 6

7

8

9

i

2

3 4

i

7 8

9

i

2

3 4

5 6 7 8 9

i

2

3 4 5 6

9

i

2

3 4

435

43.5 87.0 130.5 *74.o 217.5 261.0

304.5 348.0 391-5

432

43-2 86.4 129.6 172.8 216.0 259.2 302.4 345-6 388.8

429

42.9 85.8 128.7 171.6 214.5 257-4 300.3

343-2 386.1

426 42.6 85.2 127.8 170.4 213.0 255-6 298.2 340.8 383.4

423

42.3 84.6 126.9 169.2

434

43-4

86.8 130.2 173-6 217.0 260.4 303.8 347-2 390.6

431

43.1

86.2 129.3 172.4 215.5 258.6 301.7 344-8 387.9

428

42.8 85.6 128.4 171.2 214.0 256.8 299.6 342.4 385-2

425 42.5 85.0 127.5 170.0 212.5 255.0 297.5 340.0 382.5

422

42.2

84.4 126.6

168.8

433 43.3

86.6 129.9 173.2 216.5 259.8 303.1 346.4 389.7

430

43.0 86.0 129.0 172.0 215.0 258.0 301.0 344-0 387-0

427

42.7

85.4 128.1 170.8 213.5 256.2 298.9 341.6 384.3-

424

42.4 84.8 127.2 169.6

212. 0 254.4 296.8

339-2 381.6

421

42.1

84.2 126.3 168.4

4341

8677

ooi 3009

7337 002 1661 5980

003 029^ 4605 8912

477^ 9111

3442

7770 2093 6411

0726 5036 9342

5208 9544 3875 8202

252^ 6843

1157 5467 9772

5642

9977 4308

863? 2957 7275 1588 5898 0203

6076 0411

4741

9067

3389 7706

2019 6328 0633

6510 0844 5174

9499 3821 8138

2451 6759 1063

6943 1277 5607

9932 4253 8569

2882 7190 H93

7377 1710 6039

0364 468^ 9001

3313

7620 1924

7810

2143 6472

0796 5116 9432

3744 8051

2354

8244 2576 690^

T228

5548 9863

4174 8481

2784

004 3214

3%4

4074

4504

4933

5363

5793

6223

6652

7082

7512 005 1805 6094

006 0380 4660 8937 007 3210

7478 008 1742

7941 2234 6523 0808 5088 936^

3637 7904 2168

8371 2663 6952

1236 55i6 9792

4064 8331

2594

8800 3092 7380

1664

5944 0219

4490

8757 3020

9229 352i 7809

2092 6372 0647

4917 9184 3446

9659 3950 8238

2521 6799 1074

5344 9610 3872

0088

4379 8666

2949

7227 1501

5771 0037 4298

0517 4808 9094

3377 7651 1928

6198 0463

4724

0947 5237 9523

38o^ 8082 2355 6624 0889 5150

T376 5666

9951

4233 8510 2782

7051 1316

5576

6002

6427

6853

7279

7704

8130

8556

8981

9407

9832

009 0257 4509 8756

oio 3000

7239

on 1474

5704 9931

0124154

0683

4934 9181

3424 7662 1897

6127 0354 4576

1108

5359 9605

3848 8086 2320

6550 0776 4998

1533 5784 0030

4272 8510

2743

6973 1198 5420

1959 6208

0454 4696

8933 3166

739'6 162 1 5842

2384

6633 0878

5120

9357 3590

7818 2043 6264

2809 7058 T303

5544 9780

4013 8241 2465 6685

3234 7483 1727

5967 0204 .4436

8664

2887 7107

3659 7907 2151

6391

0627

4859 9086 33io

7529

4084 8332 2575

6815- 1050 5282

9509 3732 795i

8372

8794(9215

9637

0059

0480

0901

T323

T744

2165

0132587 6797

014 1003

5205 9403 0153598

7788

016 1974 6i55

3008 7218 1424

5625 9823 4017

8206 2392 6573

3429 7639 1844

6045 0243 4436

8625 2810 6991

3850 8059 2264

6465 0662 485^ 9044 3229 7409

4271 8480 268^

6885 1082 5274 9462

3647 7827.

4692 8901 3ioS

730^ 1501

5693

9881 4065

824^

5H3 932i

3525

772^ 1920 6112

0300

4483 8663

5534 9742 3945 8144 2~340 6531

0718 4901 9080

5955 0162

4365 8564

2759 6950

Ti37 53*9 9498

6376 5583 4785 8984 5178 7369

T555 5737 9916

6 7 8

9

i

2

3 4 5 6

7 8 9

i

2

3 4 S 6 7 8

9

253.8 296.1 338.4 380.7

420 42.0 84.0 126.0 168.0

210.0

252.0 294.0 336.0 378.o

417 41.7 83.4 125.1

166.8 208.5 250.2 291.9 333-6 375-3

253-2 295.4 337-6 379-8

419

41.9 83.8

!25-7

167.6 209.5 251.4 293.3

335-2 377-1

416

41.6 83.2 124.8 166.4 208.0 249.6 291.2 332.8

374-4

252.6 294.7 336.8 378.9

418

41.8

83.6

125.4

167.2 209.0 250.8

292.6

334.4 376.2

415

41.5 83.0 124.5 166.0 207.5 249.0 290.5 332.0 373-5

0170333

0751

1168

1586

2003

2421

2838

3256

3673

4090

4507 8677 018 2843

700^ 019 1163 5317 9467

020 3613

7751

4924 9094 3259 7421 1578 5732

9882 4027 8169

5342

9511 3676

7837 1994 6147

0296 4442 8583

5759 9927 4092

8253 2410 6562

0711

4856 8997

6176

0344 4508

8669 282^ 6977 Ti26 5270 9411

6593 0761 492S 9084 3240 7392

T54Q 5684 9824

7010 Ti77 534i 9500 3656 7807

T95S 6099 0238

7427 T594 5757 9916 4071 8222

2369 6513 0652

7844

2010

6173

3332 4486

8637 2784 6927

To66

8260 2427 6589

0747 4902 9052

3198 734i T479

021 1893

2307

2720

3134

3547

396i

4374

4787

5201

56l4

U- N<

0

1

o

3

4

5

6

1

8

9

P. P.

10000"= 2°46'4o" 1000"= o°i6'4O" S. = 4-685 5731 7 T. = 4.685 5782 7 10100 = 2 48 20 1010 = o 16 50 5731 3 5783 4

I020O = 2 50 0 1020 = 0 17 0 573! O 5784 I

10300 = 2 51 40 1030 = o 17 10 5730 6 5784 8 10400 = 2 53 20 1040 = o 17 20 5730 3 5785 5

1050 1100

N.

0 1 2 i 3 i 4

5 6 7 | 8

9

P. P.

1050

0211893 2307:2720 3134 3547

3961

4374

4787

5201

5614

51

6027

6440

6854

7267

7680

8093

8506

8919

9332

9745

i

414

41.4

413

41 3

412

41 2

52

0220157

057°

0983

1396

1808

2221

2634

3046

3459

3871

2

82.8

82.6

82;4

53

4284

4696

5109

5521

5933

6345

6758

7170

7582

7994

3 4

124.2

165.6

123.9 165.2

123.6 164.8

54

8406

8818

9230

9642

0054

0466

0878

1289

1701

2113

5

207.0

206.5

206.0

55

023 2523-

2936

3348

3759

4171

4582

4994

5405

.5817

6228

6 240.4 7 280 £

247.8 280 i

247.2 288.4

56

6639

7050

7462

7873

8284

8695

9106

9517

9928

0339

' y- 8 33L2

*uy. j. 330.4

329.6

Q 372 6

OTT i

370 8

57

0240750

1161

1572

1982

2393

2804

3214

3625

4036

4446

y j/^*^ j/ -•/

o/u»°

58

4857

5267

5678

6088

6498

6909

7319

7729

8i39

8549

411

410

409

59

8960

9370

9780

0190

0600

TOIO

1419

1829

2239

2649

i

2

41.1 82.2

41.0 82.0

40.9- 81.8

1060

025 3059

3468

3878

4288

4697

510"

55J6

5926

6335

6744

3 4

123.3

164.4

123.0

164.0

I22.7 163,6

61

7154

7563

7972

8382

8791

9200

9609

0018

0427

0836

5

205.=

205.0

204.5

62

026 1245

1654

2063

2472

2881

3289

3698

4107

4515

4924

61240.01240.0:245.4 7 287.7 '287.0 '286.3

63

5333

5741

6150

6558

6967

7375

7783

8192

8600

9008

8j32§.8 328.0 327.2

64

9416

9824

0233

0641

T049

T457

T86J

2273

2680

3088

9 369.9'369.o 368.1

65

027 3496

3904

4312

4719

5127

5535

5942

6350

6757

7i65

408 i 407

406

66

7572

7979

8387

8794

9201

9609

0016

0423

0830

T237

i

2

40.8 81.6

40.7

81.4

40.6 81.2

67

028 1644

2051

2458

2865

3272

3679

4086

4492

4899

5306

3

122.4

122. 1

121. 8

68

5713

6119

6526

6932

7339

7745

8152

8558

8964

9371

4

I

163.2 2O.1 O

162.8

162.4

69

9777

0183

0590

0996

1402

T8o8

2214

2620

3026

3432

6

•^^-t.0 244.8

2O3.5 *-»-'o>N-' 244.2 243.6

1070

0293838

4244

4649

5055

546i

5867

6272(6678

7084 | 7489

7

8

285.6 326.4

284.9 284.2 325.6h24.8

71

7895

8300

8706

9111

95l6

9922

0327

0732

"38

T543

9

367.2

366.31365.4

72

030 1948

2353

2758

3163

3568

3973

4378

4783

5188

5592

405

404

403

73

5997

6402

6807

7211

7616

8020

8425

8830

9234

9638

i

2

40.5 81.0

40.4 80.8

40.3 80.6

74

031 0043

0447

0851

1256

1660

2064

2468

2872

3277

3681

3

121.5

121. 2

120.9

75

4085

4489

4893

5296

5700

6104

6508

6912

7315

7719

4

-

IO2.O 2O2 ^

161.6

161.2

76

8123

8526

8930

9333

9737

0140

0544

0947

T35Q

T754

5 6

243.0

242.4

201.5

241.8

77

0322157

2560

2963

3367

3770

4173

4576

4979

5382

5785

7 8

283.5 282.8 324.0 323.2

282.1 322.4

78

6188 6590

6993

7396

7799

8201

8604

9007

9409

9812

9 364.5 363.6

362.7

79

033 0214 0617 1019

1422

1824

2226

2629

3031

343313835

402 1 401

400

1080

4238] 4640 | 5042

5444

5846

6248

6650

7052

7453 7855

i

40.2] 40.1

Rn l\ fl^ o

40.0

80 o

81

8257

8659

9060

9462

9864

0265 0667

To68

T47o|T87i

3 120.6 120.3

120.0

82

83

034 2273 6285

2674 6686

3075 7087

3477 7487

3878 7888

4279 1 4680 8289 i 8690

5081 9091

5482 5884 9491:9892

4

5 6

loo.e 160.4

2OI.O 2OO.5

241.2 240.6

160.0

200.0

240.0

84

0350293

0693

1094

1495

1895

V

2296 1 2696

3096

3497 3897

7

8

281.4 280.7 280.0

321.6,320.8 320.0

85

4297

4698

5098

5498

5898

6298 1 6698

7098

7498 j 7898

0 361.81360.9 360.0

86

8298

8698

9098

9498

9898

0297 0697

1097

1496 1896

i 399 1 398

397

87

0362295

2695

3094

3494(3893

4293

4692

5091 5491 5890

39-9

39.8

39.7

88

6289

6688

7087

748617885

8284

8683

9082 j 9481

9880

2

79.8

79.6 79.4

89

037 0279

0678

1076

H75 11874

2272

2671

3070 j 3468

3867

4 159.6

119,4 II9.*

159.2 158.8

1090

4265

4663 1 5062

546015858

6257

6655

7053 i 7451 : 7849

51199.5 199.0.198.5 6,239.4 238.8 238.2

91

824818646 9044

9442 9839

0237

0635

T033

1431 1829

7)279.3 278.6 8 319.2 318.4

277.9

317.6

92

0382226

2624

3022

3419 3817

4214

4612

5009

5407 5804

9 359.11358.2

357.3

93

6202

6599

6996

7393 I 779i

8188

8585

8982

9379 9776

(3961395

394

94

0390173

0570

0967

1364

1761

2158

2554

2951

3348

3745

i

39-6

39-5

39-4

95

4141

4538

4934

533i

5727

6124

6520 6917

7313

7709

2

n8°8

79.o

78.8

96

8106

8502

8898

9294

9690

0086

0482 j 0878

1274

1670

3 4

158^

118.5 158.0

157-6

97 98

040 2066 6023

2462 6419

2858 6814

3254 7210]

3650 7605

4045 8001

4441 i 4837 8396 8791

5232 5628 9187 9582

5 6 7

198.0

237.6 277.2

197.51197.° 237.0236.4 276.5 275.8

99

9977

0372

0767

1162 1557

"195212347 2742

3137 3532

8316.8 9 356.4

316.0315.2 T^.(;h'U.6

1100

0413927 4322 14716 5111 5506

5900)6295 669017084 7479

X.

0 1 2 ! 3 ' 4

5 6 7 8 I 9

P. P.

10500"= 2°55' o" 1050"= o°i7'3o

S. =4.685 5729 9 T. =4.685 5786 2

10600 = 2 56 40 1060 = 0 17 40 5729 6 5786 9

10-00 = 2 58 20 10-0 = 0 17 50 5729 2 5787 6

10800 = 300 1080 = o 18 o 5728 8 5788 4

10900 = 3 i 40 1090 = o 18 10 5/28 5 5789 i

1100 1150

N.

0 1 1

2

3

4

5

6

7

8

9

P. P.

1100

01

02 03 04

05 06

07 08 09

1110 II

12 13

14

II

17

18 19

1120

21 22 23 24

25 26

27 28 29

1130

31

32

33

34 35 36

37 38 39

1140

41 42

43

44 45 46

47 48

49

041 3927

4322

4716

Sin

5506

5900

6295 | 6690

7084

7479

i

2

3 4 5 6

7 8

9

2

3 4

5 6 7 8 •9

i

2

3 4 5 6 7 8

9

i

2

3 4

5 6

8 9

i

395

39-5 79.° 118.5 138.0 X97.5 237.o 276.5 316.0 355. 5

392

39.2

394

39.4 78.8

"8.2

*57.6 197.0 236.4 275.8 315.2 354.6

391

39.i

393

39.3 78.6

"7-9 IS7.2 196.5 235.8 275.1 314.4 353-7

390

39.o

7873 042 1816

5755 9691 043 3623 755i 044 1476 5398 9315

8268

2210 6149

0084 4016

7944 1869 5790 9/07

8662 2604 6543 0477 4409 8337 2261 6181 0099

9056 2998 6936

0871 4802 8729

2653 6573 0490

945i 3392

7330

1264

5I9J 9122

3045 6965

0882

9845 3786 7723

T657 5587 95H

3437

7357 1273

0239 4180 8117

2050 5980 9907 3829

7749 1664

0633 4574 8510

244.4 6373 0299

4222 8140 2056

T028 4968 8904

2837 6766 0692

4614

8532 2447

1422 536i 9297

3230 7159 1084

5006 8924 2839

0453230(3621

4012

4403

4795

5186

5577

5968

6359

6750

117.6 156.8 196.0 235.2 274.4 313.6 352.8

389

38.9

77.8 "6.7 155.6 194.5 233.4 272.3 3H.2 350.1

386 38.6

77-2 "5.8 154.4 i93.0 231.6

270 2 308.8

347.4

383

38.3 76.6

"4-9 153.2 i9r-5 229.8 268.1 306.4 344.7

380 38.0 76.0 114.0 152.0 190.0 228.0 266.0 304.0 342.o

i

2

3 4 5 6 7 8 9

"7-3 156.4 195.5 234.6 273.7 312.8 35L9

388 38.8

77.6 "6.4 155.2 194.0 232.8 271.6 3io.4 349-2

385

38.5

77-0 "5-5 IS4.° 192.5 231.0 269.5 308.0 346.5

382

38.2 76.4

"4.6 152.8 191.0 229.2 267.4 305.6 343.8

379

37.9

75.8 "3.7 irfi.6 189.5 227.4 265.3 303.2 34LI

377

37.7 75.4 "3.1 150.8 188.5 226.2 263.9 301.6 339.3

117.0 156.0 i95.o 234.o 273.o 312.0 35i.o

387 38.7

77.4 116.1 154.8 193.5 232.2 270.9 309.6 348.3

384

38.4 76.8

"5-2

153.6 192.0 230.4 268.8 307.2

345.6

381

38.1 76.2

"4.3 152.4

190.5 228.6 266.7 304.8 342.9

378

37.3 75.6 "3.4 151.2 189.0 226.8 264.6 . 302.4 340.2

7141 046 1048 4952

8852 047 2749 6642

048 0532 4418 8301

753i H38 5342

9242 3138 7031

0921

4806 8689

7922 1829 5732 9632 3528 7420

1309

5195

9077

8313 2219 6122

0021

3917 7809

1698 5583 9465

8704 2610 6512

0411 4306 8198

2087

5972 9853

9095 3000 6902

0801 4696 8587

2475 6360 0241

9485 339i 7292

Tigo

5085 8976

2864 6748 0629

9876

378i 7682

1580 5474 9365

3253 7136 1017

0267 4171

8072

1970 5864 9754 3641

752? T403"

0657 456i 8462

2359 6253 3i43

4030

7913 1792

049 2180

2568

2956

3343

3731

4119

4506

4894

5281

5669

6056 9929 0503798

7663 051 1525 5381

9239 0523091

6939

6444 0316 4184

8049 1911 5770 9624 3476 7324

6831 0703 4571 8436 2297 6i55

0010

3861 7709

7218 Togo 4958

8822 2683 6541

0*395 4246 8093

7606 T477 5344 9208 3069 6926

0780 4631

8478

7993 1863

5731

9591 3455 7312

Ti66 5016 8862

8380 2250 6117

998i 3841 7697

T55I 5400

9247

8767 2637 6504

0367 4227 8083

1936 5785 9631

9154 3024 6890

0753 4612 8468

2321 6170 0016

9541 34ii 7277

TI39 4998 8854

2706

655? 0400

053 0784

1169

1553

1937

2321

2706

3090

3474

T O - O

355°

4242

4626 8464 054 2299

6131 9959 055 3783 760^ 056 1423 5237

5010 8848 2682

6514 0341 4166

7987 1804 5619

5394 9232 3066

6896 0724 4548

8369 2186 6000

5778 9615 3449

7279 Tio6 4930

8750 2567 6381

6162 9999 3832

7662 T489 5312

9132 2949 6762

6546 0382

4215

8045 1871

5694

95H 3330 7H3

6929 0766 4598

8428 2254 6077

9896 3712

7524

73 1 3 1149 4981

8811 2636 6459 0278 4093 7905

7697

T532 536^

9193 3019 6841

0659

447b 8287

8081 1916 5748

9576

3401 7223

"1041

4856 8668

3 4 5 6 7 8

9

i

2

3 4

1

7 8 9

9049

9429 9810

0191

0572

0953

T334

1714

2095

2476

0572856 6661 058 0462

4260

805^ 059 1846

5634 9419 0603200

3237 7041 0842

4640

8434 2225

6013

9797 3578

3618

7422

1222

5019

88I3 2604

6391 0175 3956

3998 7802 1602

5399 9193 2983

6770 0554 4334

4379 8182 1982

5778 9572 3362

7148 0932 4712

4759 8562 2362

6158 995 1 3741

7527 1310 5090

5HO 8942 2741

6537 0330 4119

7905 T688 5468

5520 9322 3121

6917 0709 4498

8284 2066 5845!

5900 9702 3501

7296 To88' 4877

8662 5444 6223

6281 0082 3881

7676 T467 5256

9041

2822 6601

1150

6978

7356

7734

Sin

8489

8866 9244

9621

9999

0376

N.

0

1

2 3

4

5

6

7

8 1 9

P. P.

11000"= 3' 20" 1100"= o°i8'2o" S. =4.685 5728 i T. =4.685 5789 8 moo = 350 mo = o 18 30 5727 7 5790 6 1 1200 = 3 6 40 1 120 = o 18 40 5727 3 5791 4 11300 = 3 8 20 1130 = o 18 50 5726 9 5792 i 11400 = 3 10 o 1140 = o 19 o 5726 6 5792 9

1150 1200

N.

0 12 3 4

5 6 ! 7 8 9

P. P.

1150

51

S2 53

54 55 56

57 58 59

1160

61 62 63

64 65 66

67 68 69

1170

060697817356:7734

8111 8489

8866

9244

9621

9999

0376

i

•2

3 4 S

6

8 9

i

3 4

|

a

g

i

2

3 4

5 6

S

9

i

2

3 4

5 6 7 S

9

I

2

3

4 S 6 7 8 9

i

2

3

S

6

S 9

378 37.8 75.6 H3.4 151.2 189.0 226.8 264.6 302.4 340.2

375

37.5 75.Q 112.5 150.0 187.5 225.0 262.5 300.0 337-5

372

37.2 74.4 in. 6 148.8 186.0 223.2 260.4 297.6 334-8

369

36.9

73-8 110.7 147.6 184.5

221.4

258.3 295.2 332.1

366 36.6

73.2 109.8 146.4 183.0 219.6 256.2 292.8 329.4

363

36.3 72.6 108.9 145.2 181.5 217.8 254.1 290.4 326.7

377

37.7

75.4 113.1

150.8 188.5 226.2 263.9 301.6 339-3

374

37.4

74.8

112. 2 149.6 187.0 224.4 261.8 299.2 336.6

371

37-1 74.2

in. 3 148.4 185.5

222.6 259.7 296.8

333-9

368

36.8

73.6

no. 4 H7.2 184.0

220.8 257-6

294.4 331.2

365

36.5

73.0

109.5 146.0 182.5 219.0 255.5 292.0 328.5

362 36.2 72.4 108.6 144.8 181.0 217.2 253.4 289.6 325.8

376

37.6 75.2

1 12.8

150.4 188.0 225.6 263.2 300.8 338.4

373

37.3 74.6 111.9 149.2 186.5 223.8 261.1 298.4 335-7

370

37.o 74.o

III.O

148.0 185.0

222.0 259.0 296.0

333-0

367

36.7

73.4 no i 146.8 1830

220.2

256.9 293.6 330.3

364

36.4 72.8 109.2 145.6 182.0 218.4 254.8 291.2 327.6

361

36.1 72.2 108.3 144.4 180.5 216.6 252.7 288.8 324.9

061 0753 452? 8293

062 2058 5820 9578

063 3334

7086 0640834

1131

4902 8670

2434 6196

9954

3709 7461 1209

1508

5279 9046

28ll 6572 0330

4084 7836 1584

1885 5656 9423

3187 6948

°7°5 4460 8211 1958

2262 6032

9799

3563 7324 To8i

483^ 8585

2333

2639 6409 0176

3939 7699 H56

5210 8960 2708

3017 6786

0552 43i6

8075 T832

5585 9335 3082

3394 7163 0929

4692

8451

2207

5960 9710 3457

3771 7540 1305

5068 8827 2583

6335

008^

3831

4148 7916 1682

5444 9203

2958

6711

0460 4205

4580

4954 1 5329

5703

6077

6451

6826

7200

7574

7948

8322 065 2061 5797

9530 0663259 6986

067 0709

4428 8i45

8696

2435 6171

9903 3632 7358

1081 4800 8517

9070 2809 6544

S276 400^ 7730

H53

5172

8888

9444 3182 6917

0649

4377 8103

182^ 5544 9259

9818 3556 7291

T022 4750 8475 2197 5915 9631

0~I92

3930

7664

T39S 5123 8847

2569 6287

OOO2

0566

4303 8037

1768

5495 9220

2941 6659 0374

0940

4677 8410

2141 5868 9592

3313

7030

0/43

T3H

5050 8784

2514 6241 9964

368^ 7402 Tn6

T688 5424 9157 2886 6613 0336

4057

7774 1487

068 1859

2230

2601

2972

3343

37H |4085| 4456

4827

5198

7i 72

73

74 75 76

77 78 79

5569 9276 069 2980

6681 070 0379 40/3

7/61 071 H53

5138

5940 9647 3350

705i 0748

4442

8i34

1822

5506

6311 0017 3721

7421 1118 4812

8503 2190

58/S

6681 0388 4091

7791

1487 5181

8871

2559

6243

7052 0758 4461

8160 1857 5550

9240 2927 6611

7423 1129

4831

8530 2226

5919

9609 3296 6979

7794 1499 5201

8900 2596 6288

9978 3664 7348

8164 1869 5571 9270 2965 6658

0347 4033

7716

853? 2240

5941

9639 3335 7027

0715

4401 8084

8906 2610 6311

0009 3704 7396

1084 4770 8452

1180

8820

9188

9556

9924

0292

0660 T028

T396

T/63

2i3V

81 82 83 84

85 86

8/ 88 89

072 2499

617^ 9847

0733517 7184 074 0847

4507 8164 075 1819

2867 6542 0213-

3884 755° 1213

4873 8530 2184

3234 6910 0582

4251 7916

1579

5239 8895

2549

3602 7277 0949

4617

8283 1945

5605 9261 2914

3970 7644 1316

4984 8649 2311

5970 9626

3279

4337 Son T683

535i 9016

2677

6336

9992 3644

4701 8379 2050

5717 9382

3043 6702

0357 4010

5072 8746 2416

6084 9748 3409 7068 0723 437^

5440 9H3 2783

6450 0114

3775

7433 To88 4740

5807 9480 3*50

6817 0481 4141

7799 H53 5105

1190

54/0

i- Q-»~ D°03

6199

6564 6929

7294

7659! 8024 8388

8/53

91 92

93

94 95 96

97 98 99

1200

9118 076 2763 6404

0770043

3679 7312

078 0942 4568. 8192

9482 3127 6768

040/ 4042 7675

1304 4931 8554

9847 3491 7*32

0771

4406

8038

1667

5293 8916

02 1 1

3855 7496

H34

4769 8401

2030 5656 9278

o.S/6 4220 7860

1498 5133 8764

2393 6018 9640

0940 4584 8224

1862 5496 9127

2/55 6380 Qoo3

130^

4948' 8588

2225

5859 9490

3118

6743 0365

1669 5312 8952

2589 6222

9853

348o 7105 0727

2034 5676 93i6

2952 6585 0216

3843 7467 1089

2398 6040 9680

33i6 6949

0579 4206 7830 "1451

079 1812

2174

2536 2898 3260

3622

3983 4345 4707

5068

N.

0 1234.

5 6 7 8,9

P. P.

11500"= 3°ii'4o" 1150"= o°i9'ro" S. =4.685 5726 2 T. =4.685 5793 7 11600 = 3 13 20 1160 = o 19 20 5725 8 5794 5 11700 = 3 15 o 1170 = o 19 30 5725 4 5795 2 11800 = 3 16 40 1180 = o 19 40 5725 ° 5796 ° 11900 = 3 18 20 1190 = o 19 50 5724 6 5796 9

1200 1250

N.

0 | 1

234

567

8 | 9

P. P.

1200

079 1812

2174

2536 2898

3260

3622

3983

4345

4707

5068

OI 02

5430 9045

5792 9406

6i53 9767

0128

6876 0490

7238 0851

7599

T2I2

7961 T573

8322

18683 2295

362

36.2

361

,5 T

360

03

080 2656

3017

3378

3739

4100

4461

4822

5183

5543

5904

2

72.4

o^.1

72.2

72.0

04

626^

6626

6986

7347

7707

8068

8429

8789

9150

95io

3 4

108.6 144,8

108.3 144.4

108.0 144.0

05

9870

0231

0591

0952

T3I2

1672

2O32

2393

2753

3113

5

181.0

180.5

180.0

06

081 3473

3833

4193

4553

4913

5273

5633

5993

6353

6713

6 7

217.2 253.4

216.6 252.7

216.0, 252.0

07

7073

7432

7792

8152

8512

8871

9231

9591

9950

0310

8

Q

289.6

•>•>? 8

288.8

288.0

08

082 0669

1029

1388

1748

2107

2467

2826

3185

3541

3904

y j~j»v o*-*t»y IO^T-^

09

4263

4622

4981

534i

5700

6059

6418

6777

7136

749^

1210

7854

8213

857i

8930

9289

9648

0007

0365

0724

1083

359

358

ic 8

357

ii

083 1441

1800

2159

2517

2876

3234

3593

3951

4309

4668

2

35-S 7i.8

35-° 71.6

35-7 7L4

12

5026

538?

5743

6101

6459

6817

7176

7534

7892

8250

3

107.7

107.4

107.1

13

8608

8966

9324

9682

0040

0398

0756

1114

1471

1829

4 5

*43«^

179.5

r43.2 179.0

i78"s

H

0842187

254^

2902

3260

3618

3975

4333

4690

5048

5405

6 7

215.4 251.3

214.8 250.6

214.2 249.9

15

5763

6120

6478

6831

7192

7550

7907

8264

8621

8979

8

287.2

286.4

285.6

16

9336

9693

0050

0407

0764

TI2I

T478

T835

2192

2549

9

323.1

322.2

321.3

17

085 2906

3263

3619

3976

4333

4690

5046

5403

5760

6116

18

6473

6829

7186

7542

7899

8255

8612

8968

9324

9681

356

355

354

19

086 0037

0393

0750

1106

1462

1818

2174

2530

2886

3242

i

35.6

7T O

35-5

35.4 70 8

1220

3598

3954

43io

4666

5022

5378

5734

6089

6445

6801

3

*•**

106.8

71.0 106.5

106.2

21

7157

7512

7868

8224

8579

893?"

9290

9646

0001

3357

4

S

142.4 178.0

177.5

177.0

22 23

0870712 426J

1067 4620

1423 497S

1778 5330

2133 5681

2489 6040

2844 6395

3199 6750

3554 7104

3909 7459

6

213.6 249.2 284.8

213.0

248.5 284.0

212.4 247.8 283.2

24

7814

8169

8524

8878

9233

9588

9943

0297

0652

Too6

9

320.4

319.5

318.6

25

088 1361

1715

2070

2424

2779

3133

3488

3842

4196

4550

26

4901

5259

5613

5967

6321

6676

7030

7384

7738

8092

353

352

351

27 28

8446 089 1984

8800 2337

9153 2691

9507 304'

9861 3398

0215 3752

3569 4105

0923 4459

7276 4812

1630 5165

i

2

3

35.3 70.6

I05-9

35.2 7°.4 105.6

35. ! 70.2

I05-3

29

5519

5872

6226

6579

6932

7285

7639

7992

8345

8698

4

141.2

140.8

140.4

T*7C C

1230

9051

9404

9757

OIIO

0463

0816

1169

1522

T875

2228

5 6

17^.5

2II.8

211. 2

17o«5 210.6

•71

090 2^81

•7n*2 7

•2-?8fi

•5 f\^ n

A f\r\n

co/i n

r* A r\^

C7Cf

7

3

247.*

24O.4

2o^'g

J A

32

6107

•^766 6460

^zoo

6812

3°39 7164

3991 75*7

4344 7869

4097 8222

ou^y

8574

:»'tu-i

8926

D/ 3D 9279

9

317.7

316.8

315.9

33

9631

9983

5335

0687

1039

1392

1744

2096

2448

2800

34

0913152

3504

3855

4207

4559

490

5263

5614

5966

6318

350

349

348

35

6670

7021

7373

7724

8076

8427

8779

9130

9482

9833

i

35.0

34.9

34.8

36

0920183"

0536

0887

1239

1590

1941

2292

2644

2991

3346

2

3

70.0 105.0

69.8 104.7

69.6 104.4

37

3697

4048

4399

4750

5101

5452

5803

6154

6505

6856

4

140.0

139.6

139.2

38

7206

7557

7908

8259

8609

8960

93H

9661

0012

S363

5

6

210.0

*74«5

209.4

208.8

39

0930713

1064

1414

1764

2IIJ

2465

2816

3166

3516

3867

7

g

245.0

244.3

243.6 278 4

1240

4217

4567

4917

5267

56l8

5968

6318

6668

7018

7368

9

315.0

279*2

314.1

*i/°.T1 313.2

41

7718

8068

8418

8768

9117

9467

9817

0167

5517

0866

42

094 1216

1566

1915

226^

2614

2964

3313

3663

4012

4362

347

43

47 1 1

5061

5410

5759

6109

6458

6807

7156

7506

7851

i

34.7

- 44

8204

8553

8902

9251

9600

9949

0298

0647

0996

T345

2

3

69.4 104.1

45

095 1694

2042

2391

2740

3089

3437

3786

4131

4483

4832

4

138.8

46

5180

5529

5877

6226

6574

6923

7271

7620

7968

8316

5 6

173.5 208.2

47 48

8665 0962146

9013 2494

936i 2842

9709 3190

0057 3538

0406

0754 4233

TI02

4581

T45Q

4929

1798

5277

7 8 9

242.9 277.6 312.3

49

5624

5972

6320

6667

7015

7363

7710

8058

8405

8753

1250

9100

9448

9791

0142

0490

0837

1184

T53I

T879

2226

N.

0

1

234

5

6

rj

8

9

P. P.

12000"= 3°20' 0" 1200"= 0°20' o" S.

= 4.685 5724 2 T. =4.685 5797 7

12100 = 3 21 40 1210 = o 20 10 " 5723 8 5798 5

12200 = 3 23 20 1220 = o 2o 20 5723 3 5799 3

12300 = 3 25 o 1230 = o 20 30 5722 9 5800 i

12400 = 3 26 40 1240 = o 20 40 5722 5 5801 o

10

1250 1300

X.

0

1 -2 314

5 <3 ; 7 8 j 9

1

. P.

1250

096 9100; 9448 9795 0142 0490

0837 1184! 1531 T879 2226

5*

53

097 2573 6043

2920 6390 9857

3267

6737 0204

3614 3962 7084 7431 0550 0897

4309 4656 7777 8124 1243 1590

5003 8471 T936

5349 ! 5696 881719164 2283 2629

i

2

348 | 347 34.8 34.7 69.6 69.4

346

34.6 69.2

54

098 2975

3322

3668

4014 4360

4707 5053

5399

5745 6091

4

104.4

104.1

138.8

103.8

138.4

55 56

6437 9896

6783 0242

7129 j 7475 7821 0588 0934 1279

8167 1625-

8513 T97I

8859 2316

9203 9551 2662 3007

5 174.0 I73o!l73.° 6 208.8 2o8.2J207,6 7 243.61242.9 242.2

57 58

099 3353

6806

3698 7152

4044 4389 4735 7497 7842 8187

5080 5425 8532! 8877

5771 9222

6116

9567

6461 9912

8

g

278.4

277.6 276.8

59

1000257

0602

0947

129211637

198212327

2671 3016 3361

1260

3705

4050

439?

4739 ' 5084

5429 i 5773 |6n8 6462

6806

345

3441343

3 A A.I j

6i

7151

7495

7840

8184:8528

8873

9217

9561

9905 0249

2

69.0

OT'4

68.8

JtO

68.6

62 63

101 0594 4034

0938 4377

1282 4721

1626 1970 5063 5409

23H

5752

2658 6096

3002 6440

3346 6784

3690 7127

3 4 5

103.5 103.2

138.01137.6

I72.5JI?2.0

102.9 137.2 I7L5

64

7471

7814

8158

8501 8843

9188

9532 9875

0219 0562

6 7

207.0 24L5

240.8

240.1

65

IO2 0905

1249

1592

193512278

2621

2965

3308

3651

3994

8

276.0

275.2

274.4

66

4337

4680

5023

5366(5709

6052

6738

7081

7423

9 310.51309.6:308.7

67 68

7766 103 1193

8109 1535

8452 1877

8794J9I37 2220! 2562

9480 2905-

9822 3247

0165" 3589

0507 3932

0850 4274

342

341

340

69

4616

4958 5301

5643 1 598?

6327

6669

7011

7353

7695

i

2

34.2

34.i 68.2

34.o 68.0

1270

8037

8379

8721

9063 940^

9747

0089 | 0430

0772

TII4

3

102.6 136 £

102.3

102.0

/i

104 1456

1797

2139

2480

2822

3164

3505 3847

4188

4530

5

171.0

136.4 170.5

170.0

72

4871

5213

5554

5895

6237

6578

6919

7260

7602

7943

0

205.2

204.6

n-S ~

204.0

73

8284

8625

8966

9307

9648

9989

0331

0671

TOI2

T353

7 *-3y-t •'O"./ 8 273.6 272.8

272.0

74

105 1694

2035

2376

2717

3058

3398

3739

4080

4421

4761

9,307.8(306.9

306.0

75

5102

5442

5783

6124

6464

6805

7H5

7486

7826

8166

76

8507

8847

9187

9528

9868

0208

0548

0889

1229

T569

339

3381337

77

106 1909

2249

2589

2929

3269

3609

3949

4289

4629

4969

i

33.9

£.- Q

33.8

33.7

78

5309

5648

5988

6*28

6668

7°°7

7^47

7687

8026

8366

O7.O

7-

79

8705

9041

9385 9724 0063

0403 0742

To82

T42I

T76o

4

135.6 169.5

i35.2ii34.8 160,0 T^9 *•

1280

107 2IOO

2439 2778

3H7 3457

3796

4I3b

4474 4813

5152

6

203.4

202.8

236 6

2O2. 2

81

5491

5830)6169

6508 I 6847

7186

752?

7864 | 8203

8541

8

237.3 271.2

2/0.4

235.9 269.6

82

8880

9219 9558

9896(0235

0574

0912

1251 1590

T928

91305.I

304.2

303.3

83

I08226/

2605

2944

3282

3620

3959

4297

4635

4974

5312

84

5650

5988

6327

6665-

7003

7341

7679

8017

89ft JD5

8693

336

335

334

85

9031

9369

9707

0045

0383

0721

TQ59

T396

T734

2072

i

33.6

33.5

33.4

86

I0924IO

2747

3085

3423

4098

4435

4773

5448

2

3

67.2 100.8

67.0 100.5

66.8

IOO.2

87

5785

6123

6460

6798

7135

7472

7810

8147

8484

8821

4

134.4

-/CO «

i34.o

133.6

,£.—

88

9159

9496

9833

0170

0507

0844

Tl8l

T5i8

T855

2192

5 AUO.U j.wy.3 xu/.vj 6 2OI.6;2OI.O,'2OO.4

89

II02529

2866

3203

3540

38/7

4213

4550

4887

5224

5560

7

Q

235.2 234.5 233.8

o^9 «!,-,£C ^ nt,- r.

1290

5897

6234! 6570

6907

7244

758o

7917

8253

8590

8926

91302.4 301.5 300.6

91

9262

9599

9935

0272

0608

0944

T28o

T6i7

^953

2289

92

III 2625

2961

3297

3633

3969

4306

4642

4977

5313

5649

333

93

5985

6321

6657

6993

7329

7664

8000

8336

8671

9007

I

33-3

94

9343

9678

0014

03 ^f

0685

T02I

T356 1691

2027

2362

2 3

66.6 99.9

95

112 2698

3333

3368 3704

4039

4374

4709

5045

538o 5715

4

133.2

96

6050

6385

6720

7°55 7390

7725 8060

8395

8730 9065

5

6

166.* 199.8

97

9400

9735

0069

0404 0739

To/4 1408

1743

2078

2412

7

98

U32747

3081 3416

375i 4085

4420

4754

5088

5423

5757

9

299.7

99

6092 6426 6760

7094 j 7429

7763 8097 8431

8765 9099

1300

9434 19768 0102 0436 0770

TI04 7437 T77I

2105 2439

N.

0 1 ' : 2 " 3 4

5 6 7

8 9

P

. P.

12500"= 3C28' 20" 1250"= o°20' 50" S. =4.685 5722 i T. = 4.68.5 5801

8

12600 = 3 30 o 1260 = o 21 ~o 5721 7

5802

7

12700 = 3 31 40 1270 = 0 21 10 5/21 2

5803

5

12800 = 3 33 20 1280 = o 21 20 5720 8

5804

4

'00 = 3 35 o 1200 = o 21 3., 57-0 4

5*05

3

n

1300 1350

N.

0

1

2 | 3

4

5

6

7

8

9

P. P.

1300

OI 02 03 04

05 06

07 08 09

1310 ii

12 13

14 15 16

J7 18

19 1320

21

22 23 24

25 26

2/ 28

29

1330

31

32

33

34 35 36

37 38 39

1340

41 42

43

44 45 46

47 48

49 1350

1139434

9768

0102

0436

0770

1104

T437

T77I

2105

2439

i

2

3 4 5 6

9

i

2

3

334

33.4

66.8

100.2

133.6 107.0 200.4

233.8

267.2 300.6

332

33.2

66.4 99-6

333

33.3 66.6 99>9 133.2 166.5 199.8 233.1 266.4 299.7

331

33.1 66.2 99-3

1142773

6110 9444 1152776 6105 9432

116 2756 6077 9396

3107 6443 9777

3109 6438 9764

3088 6409 9728

3441 6777 OIII

3442 6771 0097

3420 6741

0060

3774 7110 0444

377S 7103 0429

3753 7073 -0392

4108

7444 0777

4108 7436 0762

408^ 7405 0723

4442 7777

TIIO

4441 7769 1094

4417

7737 1055

4775 8111 1444

4774 8101 1427

4749 8069

T387

5109 8444

T777

5107

8434 T759 5081 8401 1718

5443 8777

2110

5439 8767 2091

5413 8733 2050

5776 9111 2443

5772 9099 2424

5745 9065 2381

1172713

3044

3376

3707

4039

4370

4702

5033

5364

5696

6027 9338 118 2647

5954 9258

H92559

5858 9154 1202448

6358 9669 2978

6284 9588 2889

6187 9484

2777

6689

0000

3309 6615 9918 3219

6517 9813

3106

7021 033i 3639

6945 0248

3549

6847 oi43 3436

7352 0662

3970 7276 0578 3879

7177 0472 3765

7683 0993 430i 7606 0909 4209

7506 0801 4094

8014 1324 4631

7936 1239 4539

7836 TI3I

4423

8345 T65I 4962

8267 T569 4868

8165 1460

4752

8676 1986 5293

8597 T899 5198

8495 T789 5081

9007 2316 5623

8927 2229 5528

882^ 2119 54io

5 6 7 8

9

i

2

3 4 5 6

{

9

i

2

3 4

6

7 8

Q

I

2

3

4 5 6 7 8 9

i

2

3 4 5 6 7 8 9

i

2

4

5 6 7 8

9

166.0 199.2 232.4 265.6 298.8

330

33.o 66.0 99.o 132.0 165,0 198.0 231.0 264.0 297.0

328

32.8 65.6 98.^ 131.2 164.0 196.8 229.6 262.4 295.2

326 32.6 65.2

97.8 I3°.4 163.0 195.6 228.2 260.8 293.4

324

3*2.4 64.8 97.2

I29;6

162.0 J94.4 226.8 259.2 291.6

322

32.2 64.4 96.6 128.8

161.0 193.2 225.4

257.6 289.8

165^5 198.6 23L7 264.8

297.9

329

32.9 65.8 98.7 131.6 164.5 197.4 230.3 263.2 296.1

327

32.7 65.4 98.1 130.8

163.5 196.2 228.9 261.6 294.3

325

32.5

5739

6068

6397

6726

7°55

7384

7713

8042

8371

8699

9028 1212315 5598

8880 1222159 5435 8709 123 1981 5250

9357 2643

5927 9208 2487 5763 9036 2308 5577

9686 2972 625?

9536 2814

6090

9364 2635 5903

0014 3300 6583 9864 3142 6418

9691 2962 6230

0343 3628 6911

0192 3470 6745 0018 3289 6557

0672 3957 7239

0520 3797 7073

0345 3616 6883

TOGO 4285 7568

0848

4125 7400

0672 3942 7210

1329 4614 7896

1175

4453

7727

TOOO 4269

7537

T657 4942 8224

T503

4780 8051 1327 4596 7863

1986 5270 8552

1831 5108 8382

T654 4923 8190

8516

8843

9169

9496

9822

0149

0475

0802

TI28

1454

124 1781 5042 8301

1251558 4813 8063-

126 1314 456i 7806

2107 5368 8627

1884 5138 8390

i639 4886 8130

2433 5694 8953

2209

5463 8715 1964

5210

8454

2759 6020

9279

253S 5788 9040

2288 5531 8779

3086 6346 960^

2860 6114 9361 2613

5859 9103

34i2 6672 9930 3186

6439 9690

2938 6184

9427

3738 6998 0256

35ii 6764

ooi^

3263

6508

9751

4064

7324 0582

3837 7089

0339

3587 6833 0076

4390 7650 0907

4162 7414 0664

3912

7157 5400

4716 7976 T233

4487

7739 0989

4237 7481

0724

97.5 130.0 162.5 i95.o 227.5 260.0 292.5

323

32.3 64.6 96.9 129.2 161.5 193.8 226.1 258.4 290.7

321

32.1 64.2 96.3 128.4 160.5 192.6 224.7 256.8 288.9

127 1048

1372

1696

2020

2344

2668

2992

33i6

3640

3964

4288

7525 1280760

3993 7223 1290451

3676 6899 1300119

4612

7849 1083

43i6

7546 0773

3998

7221 0441

4935 8172 1407

4639 7869 1096

4321

7543 0763

5259 8496 1730

4962 8191 1418

4643 7865 1085

5583 8819

2053

5285 85H 1741

4965 8187 1407

5907 9H3 2377 =5608

8837 2064

5288 8510

1729

6230 9466 2700

5931

9160

2386

5610

8832 2051

6554 9790 3023, 6254

9483 2709

5932 9154

2372

6878 0113 3346

6577 9805

3031

6255 9476 2694

7202

0437 3670

6900 0128 3354

6577 9798 3016

3338

3659

398i | 4303

4624

4946 15267

5589

5911 6232

N.

0

1

2 3

4

5 G

1 8

9

P. P.

13000"= 3°36'4o" 1300"= o°2i/40// S. = 4.685 5719 9 T. =4.685 5806 2 13100 = 3 38 20 1310 = o 21 50 5719 5 5807 i 13200 = 3 40 o 1320 o 22 o 5719 o 5808 o 13300 = 3 41 40 1330 = o 22 10 5718 6 5808 9 13400 = 3 43 1340 = o 22 20 5718 I 5809 8

1350 1400

X.

0 1234

5 ! G 7 i 8 0

P. P.

1350

5i 52 53

54 55 56

57 58 59

1360

6i

62 63 64

65 66

6? 68 69

1370

71

72

73

74 75 76

77 78 79

1380

81 82 83 84

85 86

87 88 89

1390

91 92

93

94 95 96

97 98 99

1400

i303338|3659 398i 4303 4624

4946 5267 5589

59ii

6232

j

3 4 5 6

!

i

2

3 4

7

8

9

;

2

« ej

6

7 8

Q

I 2

3 4 5 6

7

8

9

3 4 5 6

I

9

i

2

3 4 5 6 7

9

8221 32.2 64.4 96.6 128.8 161.0 193.2 225.4; 257.6 289.8

320

32.0 64.0 96.0 128.0 160.0 192.0 224.0 256.0 288.0

318

31.8 63.6 95.4 127.2

159.° 190.8

222.6 254.4 286.2

316

31.6 63.2

94.8 126.4

158.0 189.6

221.2 252.8 284.4

314

31.4

62.8

94.2 125.6 157.0 188.4 219.8 251.2 282.6

312

31.2 62.4

93-6

124.8 156.0 187.2 218.4 249.6 280.8

31

i 3

2 6

3 9. 4 12

5 15 6 18

7 21'

824;

91275

321

32.1 64.2 96.3 128.4 160.5 192.6 224.7 256.8 288.9

319

31.9 63.8 95-7 127.6 159.5 191-4 223.3 255.2 287.1

317

31.7 63.4 95.i 126.8 158.5 190.2 221.9 253.6- 285.3

315

3L5 63.0

94-5 126.0

157.5 189.0

220.5 252.O 283.5

313

3L3 62.6 93.9

X25.2

156.5 187.8 219.1 250.4 281.7

311 31.1 62.2 93.3 124.4 155.5 186.6 217.7 248.8 279.9

LO c.o

J.O

J.o f.°

;.°

5.o ".o S.o

).°

6553 9767 131 2978

6187

9393 1322597

5798 8998 I332I95

6875

0088 3299

6507 9713 2917

6119

9317 2514

7196 0409 3620

6828 0034 3237

6439 9637 2834

7518 0730 394i

7H9 0354 3558

6758 9957 3153

7839 1052 4262

7469 0-675 3878

7078 (5277 3473

8161 T373 4583

7790

0995 4198

7398 0596 3792

8482 1694 4903

8111

1316 45i8

7718 0916 4112

8803

201^ 5224

8431 T636

4838

8038 T236 4431

9124 2336 5545

8752 T956

5158

8358 T555 4750

9446

2657 5866

9072 2277 5478 8678 T875 5°7°

5389

5708

6028

6347 6666

6985

730^

7624

7943 | 8262

8581 1341771 4959 8144 135 1327 4507

7685 1360861 4034

8900 2090

5277 8462 1641 4821

8003

1178

4352

9219 2409 5596 8780 1963 5H3

8320 1496 4669

9538 2728 59H

9099 2281 546i

8638 1813 4986

9857 3046

6233

9417 2599 5779

8956 2131 5303

0176 3365 6551

9735 2917 6096

9273

2448 5620

0495 3684 6870

0054 3235 6414

9591

2765

5937

08I4 4003 7188

5372

3553 6732

9908 3083

6255

"33 4321 75°7 0690 3871 7050

0226 3400 6572

1452 4640 7825 Too8

4189 7367

0543 3717 6889

7206

7523

7840

8i57

8473

8790

9107

9424 | 9741

0058

1370375 3541 6705

9867 1383027 6184

9339 1392492

5643

0691

3858 7022

0183

3343. 6500

965F

2807

5958

1008 41/4 7338

0499

3659 68l6

9070 3122 6272

132! 4491

7654 0815 3974 7i3i 0285 3438 6587

1641 4807 7970

TI3I

4290

7447 0601

3753 6902

1958 5124

8287

T447 4606 7762

0916 4068 7217

2275 5440 8603

T763 4922 8078

1231

4383 7532

2591 5756 8919

2079 5237 8393

T547

4698

7847

2908 6073 9235

2"395 5553 8709

T862

5013 8161

322J

6389 9551 2711 5869 9024

2177 5328 8476

8791

9106 9420 Q/35

0050

0364 0679! 0993 1308

T622

1401937 5080 8222

141 1361

4498 7632

1420765"

3893 7022

2251 5391 8536

16/5 4811 7946

1078 4208 7335

2566

5709 8850

1988 5121 8259

1391

4520 7648

2880 6023 9164

2302 5438 8572

1704

4833 7960

3191 6337 9478

2616 5752 8885

2017 5H6

8273

3509 6651 9792

2930 6065 9199

2330

5459 8586

3823 6966 0106

3243 6379 9512

2643

5772 8898

4138 7280 0419

3557 6692 9825

2956 6084 9211

4452 7594 0733

3871 7006 0138

3269 6397 9523

4766

7908

1047

4184 7319 0451

3582 6710 9836

1430148

0460

0/73| 1085

1398

1710

2022

233J

2647

2959

32/1 6392

95ii 1442628 5742 8854

145 1964 5072 8177

3584 6704 9823

2939 6053 9165

2271 5382 8488

3896 70l6

oi 31

3251 636^ 9476

2586

5693 8798

4208 7328 0446

3562 6676 9787

2897 6004 9108

4520 7640 3758

3874 6987 0098

3207

63H 9419

4832

7952 1070

4185 7298 0409

3518

6625 9729

5H4 8264 T38i

4497 7610 0720

3829

6935 0039

5456 8576 T693 4808 7921 1031

4140 7246 0350

5768 8888

200^

5H9

8232

^342

4450 7556 0660

6080 9199 2316

5431 8543 T653 4761

7867 0970

146 I280| 1591 1901 |22II

2521

2831 3141

3451

376i

4071

N.

0 ' 1

213 4

516 7 8 9

P. P.

13500"= 3°45' o" 1350"= oc22'3o" S. = 4.685 5717 7 '^.=4.685 5810 7

13600 = 3 46 40 1360 = 0 22 40 5717 2

13700 = 3 48 20 1370 = o 22 50 57l6 7 58i2 5 13800 = 3 50 o 1380 = o 23 o 57i6 3 58i3 5 I390- = 3 5i 40 1390 = o 23 10 57*5 8 5814 4

1400 1450

N.

0

1 2

3

4

5

6

1

8

9

P. I1.

1400

01 02 03 04

05 06

07 08 09

1410 ii

12 13

. 14 15

16

17 18

19 1420

21

22 23

24

25 26

27 28 29

1430

31 32 33

34 35 36

37 38 39

1440

41

42.

43

44 45 46

47 48 49

1450

146 1280

i59i

1901

2211 2521

2831

3Hi

345i

376i

4071

i

2

3 4

i

7 8

9

i

2

3 4

i

7 8

9

i

2

3 4 5 6 7 8 9

i

2

3 4 S 6 7 8

Q

I

2

3 4 5 6 7 8 9

i

2

3 4 5 6 7 8 9

311 31. i

62.2

93.3 124.4 155.5 186.6 217.7 248.8 279-9

309 30.9 61.8 92.7 123.6 154.5 185.4 216.3 247.2 278.1

3of

30.7 61.4 92.1

122.8

IS3-5 184.2 214.9 245.6 276.3

305 30.5

DI.O 91.5 I22.O

152.5 183.0 213.5 244.0 274.5

303

30.3 60,6

90.9

121. 2 I5I.5

181.8

212. 1 242.4 272.7

301

3°.i 60.2

90.3 1 20. 4

iSo.S 180.6 210.7 240.8

270.9 21

I 2(

2 5<

3 8c 4 lie 5 14$ 6 i7(

7 20C 823C

926c

310

31.0 62.0

93.o 124.0 iSS.o 186.0 217.0 248.0 279.0

308 30.8 61.6 92.4 123.2 154.0 184.8 215.6 246.4 277.2

'306 30.6 61.2

91.8

122.4 153.0 183.6 214.2 244.8 275.4

304

3°.4 60.8 91.2

121. 6

152.0 182.4

212.8 243.2 273.6

302

30.2 6o.4 90.6 i2o;8 151.0 181.2

211. 4 241.6 271.8

300 30.0 60.0 90.0

120.0 150.0

180.0

210.0

240.0 270.0

>9 >.9 >.8

1-7 >.«

).5 ).4 ).3 ).^ ).i

438i 7480

H70577

36/1 6763 9853

148 2941 6027 9110

4691 7790 0886

398o 7072 0162

3250 633? 9418

5001 8100 1196

4290 738i 0471

3558 6643 9726

5311 8409

1505

4599 7690 0780

3867 6952

003?

5621 8719 1815

4908-

7999 1089

4175 7260

0343

5931 9029 2124

5217 8308

1397

4484 7569 0651

6241 9338 2434

5527 8617 1706

4793 7877 0959

655i 9648

2743

5836 8926

201?

5101 8185 T267

6861 9958 3052

614? 9235 2324

54io 8493 T575

7170 0267 3362

6454 9544 2632

57i8 8802 1883

149 2191

2499

2807

3H5

3423

3731

4039

4347

4655

4962

5270

8347 150 1422

4494 7564 151 0633

3699 6762 9824

5578 865? 1729

4801 7871 0939

400^ 7069 0130

5886 8962 2036

5108 8178 1246

43ii

7375 0436

6i93 9270

2344

5415 8485

1553 4618 7681 0742

6501

9577 2651

5722 8792 1859

4924 7987 1048

6809 9885 2958

6030

9099 2166

5231 8293

T354

7116 0192 3265

6337 9406 2472

5537 8600 T66o

7424 0499 3573 6644 9712 2779

5843 8906 1966

7732 0807 3880

6951 0019 3085

6150 9212

2272

8039 1114 4187

7257 0326

3392

6456 95i8

2578

^1522883

3189

3495

3801

4107

4412

4718

5024

5329

5635

5941 8996

1532049

5100 8149 I54H95

4240 7282 1550322

6246 9301 2354

540? 8453 1500

4544 7586 0626

6552 9607 2659

57io

8758 1804

4848 7890 0930

6858 9912 2964

6015 9063 2109

5153 8i94 1234

7163 0217 3270

6320 9368 2413

5457 8498

1538

7469 0523 3571 662^ 9672 2718

576i

8802 1842

7774 0828 3880

6929

9977 3022

6065 9106 2145

8080 TI33 4i8?

7234 0281

3327 6370 9410 2449

8385 T439 4490

7539 0586

3631

6674 97H

2753

8691 1744 4791

7844 0891 3935

6978 0018

3057

336o

3664

3968

4271

4575

4879

5182

8217 1249 4280

7308 0334 3359

6381 9401 2418

5486

5789

6093

6396

943Q 1562462

5492 8519 1 57 1 544

4568 7589 1580608

6700 9733 276?

5794 8822 1847

4870 7891 0910

7003 0037 3068

6097 9124 2149

5172 8193

1212

7307 0340

3371

6400 9427 2452

5474 8495 1513

7610 0643 3674

6703 9729 2754

5776 8797 1815

79i4 0946

3977 7006 0032 3056

6079

9099 2117

8520 T553 4583

7611

0637 3661

6683 9702 2720

8824 1856 4886

7914 0939 3963

6985 0004 3022

9127 2159 5189

8216 1242 4265

7287 0306 3323

3625

3927

4228

4530

4831

5133

5434

5736

6037

6338

6640

9653 159 2663

5672 8678 1 60 1683

4685 7686 161 0684

6941

9954 2964

5973 8979 1983

4985 7986 0984

7243 525? 3265

6273 9280 2284

5286 8285 1283

7544 0556 3566

6574 9580

2584 5586 8585 1583

7845 0857 3867

6875 9881 2884

5886 8885 1883

8146 1158 4168

7175 0181 3184

6186

9i85 2182

8448 H59 4469

7476 0481 3481 6486 948? 2482

8749 1760 4770

7777 0782

378? 6786 978? 2781

9050 2061 5070

8077

T082

4085

7086 0084 3081

935i 2362

5371

8378 T383 4385

7386 0384 338o

3680

3980 4279

4578

4878

5177

5477

5776

6075

637S

.

0

1

2

3

4

5

6

7

8

9

P. P.

14000"= 3- 53' 20" 1400"= o°23/2o// S. = 4.685 5715 3 T. =4.685 5815 4 14100 = 3 55 o 1410 = o 23 30 5714 8 5816 3 14200 3 56 40 1420 = o 23 40 5714 4 5817 3 14300 = 3 58 20 1430 = o 23 50 5713 9 5818 2 14400 = 400 1440 = o 24 o 5713 4 5819 2

14

1450 1500

N.

0

123

4

5 6

7

8 9

P. P.

1450

51 52 53

54 55 56

57 58 59

161 3680

3980

4279 4578

4878

5177

5477

5776

6075 637J

300

30.0 60.0 90.0

120.0 I5O.O

180.0

210.0 240.0 270.0

298 29.8

59.6 89.4 119.2 149.0 178.8 208.6 238.4 268.2

296

=9.6 59-2

ss.s

118.4

148.0 177.6 207,2

236.8 266.4

294 29-4 58.8

88.2 117.6 I47.° 176.4 205.8

m

292

29.2 58.4 87.6 116.8 146.0 175.= 204.4 233.6: 262.8!

290 29.0 58.0 87.0

116.0 145.° 174.° 203.0 232.0 261.0

299

29.9 59.8 89.7 119.6 *49.5 179.4 209.3 239.2 269.1

297

*9-7 59.4 89.1 118.8 I4«.5 178.2 * 207.9 ' 237.6 267.3

i

29$

2^o

If

118.0 147.5- 17740

206.5

2T,6f 265 1?

!

293V

sti

87.9 117.2

146.5 175.8. 205.1

234.4;

263.7

291 29.1 58.2 87.3 116.4 !43.5 174.6 203.7 232.8 261.9

289 28.9

57.8 86.7 115.6 144.5

173-4

202.5 231.2

jOO.I

6674 9666 1622656

5644 8630 163 1614

4596

7575 1640553

6973 9965 2955

5943 8928 1912

4894

7873 0851

7273 0264

3254

6241 9227 2210

5192

8171 1148

75/2 0563 3553 6540

9525 2508

5490 8469 1446

7871 0862 3852

6839 9824 2807

5788 8767 !/43

8170 Ti6i 4150 7137

0122 3I03-

6086 9064 2041

8470 1460 4449

7436

0420 3403

6384 9362 2339

8769 T759 4748

7734 0719 3701

6682 9660 2636

9068 2058 5047

8033 1017

3999 6979 9958 2934

9367 2357

5345

8331 T3i5

4297

7277 0255 3231

i

2

3 4 5 6 7 8 9

1460

3529

3826

4123

4421

4718

5016

5313

5610

5908

6205"

i

2

3 4 5 6

I

9

2

3

4 5 6

9

,

\

9

i

2

3 4 5 6

I

9

i

2

3 4

5 6

7 S

9

61

62 63 64

65 66

67 68 69

6502

9474 165 2443

54ii

83/6 166 1340

430i 7261 167 0218

6799 9771 2740

5707 8673 1636

4597 7556 05i4

7097 0068 3037 6004 8969 IQ22

7394 036! 3334

6301 9265 2228

7691 0662 3631

6597 9562

2^21

7988 0959 3927

6894 9858 2821

8285 T256 4224

7190

oi 5 1 3H7

6077

9035 1991

8582 T553 4521

7487 0451 3413

6373 933i

2287

8880 1850 4817

7783 0747 3709

6669 9627

2582

9177 2146

5H4 8080 TQ43 4005

696^ 9922

2878

4893

7852 0809

5189

8148

IIOJ

5485 8444 1400

5781 S740 1696

1470

3173

3469 I 3764

4060

435T

4650

4946

5241

5536

5831

71 72

73

74 75 /6

77 78 79

6127 9078 168 2027

4975 7920 169 0864

38oj

6744

9682

6422

9373 2322

5269

8215 1158

4099

7038 9975

6717 9668 2617

5564 8509 1452

4393

7332 0269

7012

9963 2912

5859 8803 1746

4687 7626 0563

7308 0258 3207

6i53

9098 2040

498i

7920 0856

7603 0553 3501 6448 9392 2335

5273 8213 1150

7898 0848 3796

6742 9686 2629

5569 8507 T443

8i93 "43 4091

7037 9981

2923

5863 8801 T737

8488 T438 4386

7331

0275 3217

6i57 9094 2030

8783 T733 4680

7626

0569 3511 6450 9388 2324

1480

1702617

2911

3204

3497

3791

4084

4377

4671

4964

5-57

81 82 83 84

85 86

87 88

89

555i 8482 171 1412

4339 726^ 1720188

3110 6029 8947

5844 8775 1704

4632

7557 0480

3402 6321 9239

6i37 9068 1997

4924

7849 0773

3694 6613

9530

6430 936i 2290

5217

8142 1065"

3986 6905 9822

6723 9654 2583

5509 8434 1357

4278 7197 0113

7017

9947 2876

5802 8727 1649

457° 7488 0405

73io

0240 3168

6095 9019 1941

4862 7780 0697

7603 0533 346i

6387 93ii

2233

5154 8072 0988

7896

0826 3754

6680 9604 2526

5446 8364 T28o

8189

TlIO 4046

6972 9896 28l8

5737 8655 T57i

1490

173 1863

2154

2446

2737 3°2S

3320 3611

3903

4194

4485

91 92

93

94 95 96

97 98

99

1500

4776 7688 i/4 0598

3506 6412 93i6

1752218 5118 8016

5068

7979 0889

3797 6702 9606

2508 5408 8306

5359 8270 1180

4087

6993 9897

2798 5698 8596

5650 8561

H7I

4378 7283 0187

3088 5988 8885

594i 8852 1761

4669

7574 0477

13378 6278

J9I75

6233 9143 2052

4959 7864 0767

3668

6567 9465

6524 9434 2343

5250 815^ T057

3958 68v

9754

68iJ 9725 2634

5540 8441 T348

4248

7147 0044

7106 0016 292^

5831

8735 1638

4538 7437 0333

7397 0307

3215 6121 9026 1928

4828

7727 0625

176 0913

I2O2 1492 I78l|2O7I

2360 ! 2649

2939

^228

35i8

x

0 1234

5678

9

P. R

1-4500"= 4°i'40" 1450"- 0^24' 10" S. =4-685 5712 9 T. =4-«>«!> sjjtzo -j 14600 = 4 3 20 1460 = o 24 20 5712 4 . 2g~n ~ 14700 = 450 1470 = o 24 30 ?g23 > 14800 = 4 6 40 1480 = o 24 40 ^82^ 2 . » - 4 8 20 1490 o 24 50 57 i^ 9 -

1500 1550

N.

0

1

2

3

4

5

6

7

8

9

P P.

1500

1760913

1202

1492

1781

2071

2360

2649

2939 3228

35i8

OI

3807

4096

4386

4675

4964

5253

5543

5832

6121

6410

02

6699

6988

7278

7567

7856

8145"

8434

8723

9012

9301

zyu

as»y

03

9590

9879

0168

0457

o"745

T034

T323

T6i2

1901

2190

i

2

29.0

28.9

57.8

04

1772478

2767

3056

3345

3633

3922

4211

4499

4788

5076

3 4

87!o 116.0

86.7